robumeta
library(readr)
library(dplyr)
library(metafor)
library(devtools)
library(purrr)
library(tidyverse)
library(tibble)
library(kableExtra)
library(robumeta)
library(ggpubr)
library(ggplot2)
# loads the raw data, setting some default types for various columns
load_raw <- function(filename) {
read_csv(filename,
col_types = cols(
.default = col_character(),
project_id = col_character(),
id = col_character(),
parameter_id = col_character(),
age_in_days = col_integer(),
date_of_experiment = col_datetime(format = ""),
weight = col_double(),
phenotyping_center_id = col_character(),
production_center_id = col_character(),
weight_date = col_datetime(format = ""),
date_of_birth = col_datetime(format = ""),
procedure_id = col_character(),
pipeline_id = col_character(),
biological_sample_id = col_character(),
biological_model_id = col_character(),
weight_days_old = col_integer(),
datasource_id = col_character(),
experiment_id = col_character(),
data_point = col_double(),
age_in_weeks = col_integer(),
`_version_` = col_character()
)
)
}
# Apply some standard cleaning to the data
clean_raw_data <- function(mydata) {
mydata %>%
# Fileter to IMPC source (recommened by Jeremey in email to Susi on 20 Aug 2018)
filter(datasource_name == 'IMPC') %>%
# standardise trait names
mutate(parameter_name = tolower(parameter_name) ) %>%
# remove extreme ages
filter(age_in_days > 0 & age_in_days < 500) %>%
# remove NAs
filter(!is.na(data_point)) %>%
# subset to reasonable set of variables
# date_of_experiment: Jeremy suggested using as an indicator of batch-level effects
select(production_center, strain_name, strain_accession_id, biological_sample_id, pipeline_stable_id, procedure_group, procedure_name, sex, date_of_experiment, age_in_days, weight, parameter_name, data_point) %>%
arrange(production_center, biological_sample_id, age_in_days)
}
# this is a necessary step for the loop across all traits
data_subset_parameterid_individual_by_age <- function(mydata, parameter, age_min, age_center) {
tmp <- mydata %>%
filter(age_in_days >= age_min,
id == parameter) %>%
# take results for single individual closest to age_center
mutate(age_diff = abs(age_center - age_in_days)) %>%
group_by(biological_sample_id) %>%
filter(age_diff == min(age_diff)) %>%
select(-age_diff)
# still some individuals with multiple records (because same individual appears under different procedures, so filter to one record)
j <- match(unique(tmp$biological_sample_id), tmp$biological_sample_id)
tmp[j, ]
}
calculate_population_stats <- function(mydata, min_individuals = 5) {
mydata %>%
group_by(population, strain_name, production_center, sex) %>%
summarise(
trait = parameter_name[1],
x_bar = mean(data_point),
x_sd = sd(data_point),
n_ind = n()
) %>%
ungroup() %>%
filter(n_ind > min_individuals) %>%
# Check both sexes present & filter those missing
group_by(population) %>%
mutate(
n_sex = n_distinct(sex)
) %>%
ungroup() %>%
filter(n_sex ==2) %>%
select(-n_sex) %>%
arrange(production_center, strain_name, population, sex)
}
create_meta_analysis_effect_sizes <- function(mydata) {
i <- seq(1, nrow(mydata), by = 2)
input <- data.frame(
n1i = mydata$n_ind[i],
n2i = mydata$n_ind[i + 1],
x1i = mydata$x_bar[i],
x2i = mydata$x_bar[i + 1],
sd1i = mydata$x_sd[i],
sd2i = mydata$x_sd[i + 1]
)
mydata[i,] %>%
select(strain_name, production_center, trait) %>%
mutate(
effect_size_CVR = Calc.lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
sample_variance_CVR = Calc.var.lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
effect_size_VR = Calc.lnVR(CSD = input$sd1i, CN = input$n1i, ESD = input$sd2i, EN = input$n2i),
sample_variance_VR = Calc.var.lnVR(CN = input$n1i, EN = input$n2i),
effect_size_RR = Calc.lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
sample_variance_RR = Calc.var.lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
err = as.factor(seq_len(n()))
)
}
Function to calculate meta-analysis statistics. Created by A M Senior @ the University of Otago NZ 03/01/2014
Below are functions for calculating effect sizes for meta-analysis of variance. All functions take the mean, sd and n from the control and experimental groups.
The first function, Cal.lnCVR, calculates the the log response-ratio of the coefficient of variance (lnCVR) - see Nakagawa et al 2015.
The second function calculates the measurement error variance for lnCVR. As well as the aforementioned parameters, this function also takes Equal.E.C.Corr (default = T), which must be True or False. If true, the function assumes that the correlation between mean and sd (Taylor’s Law) is equal for the mean and control groups, and, thus these data are pooled. If False the mean-SD correlation for the experimental and control groups are calculated separately from one another.
Similar functions are then implemented for lnVR (for comparison of standard deviations) and ln RR (for comparison of means)
Calc.lnCVR <- function(CMean, CSD, CN, EMean, ESD, EN){
log(ESD) - log(EMean) + 1 / (2*(EN - 1)) - (log(CSD) - log(CMean) + 1 / (2*(CN - 1)))
}
Calc.var.lnCVR <- function(CMean, CSD, CN, EMean, ESD, EN, Equal.E.C.Corr=T) {
if(Equal.E.C.Corr==T){
mvcorr <- 0 #cor.test(log(c(CMean, EMean)), log(c(CSD, ESD)))$estimate old, slightly incorrect
S2 <- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * mvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * mvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))
}
else{
Cmvcorr <- cor.test(log(CMean), log(CSD))$estimate
Emvcorr <- cor.test(log(EMean), (ESD))$estimate
S2 <- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * Cmvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * Emvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))
}
S2
}
Calc.lnVR <- function(CSD, CN, ESD, EN){
log(ESD) - log(CSD) + 1 / (2*(EN - 1)) - 1 / (2*(CN - 1))
}
Calc.var.lnVR <- function( CN, EN) {
1 / (2*(EN - 1)) + 1 / (2*(CN - 1))
}
Calc.lnRR <- function(CMean, CSD, CN, EMean, ESD, EN) {
log(EMean) - log(CMean)
}
Calc.var.lnRR <- function(CMean, CSD, CN, EMean, ESD, EN) {
CSD^2/(CN * CMean^2) + ESD^2/(EN * EMean^2)
}
Having loaded the necessary functions, we can get started on the dataset.
We here provide the cleaned dataset, which we have saved in a folder called “export”, as easy starting point. However, the full dataset can be loaded and cleaned using the data cleaning function (Function 1 above), if “#” signs in the code below are removed (created as that is much smaller than the .csv - which we can still provide for those who absolutely want to start from scratch?)
## Load raw data - save cleaned dataset as RDS for reuse
#data_raw <- load_raw("data/dr7.0_all_control_data.csv") %>%
# clean_raw_data()
#dir.create("export", F, F)
#saveRDS(data_raw, "export/data_clean.rds")
getwd()
## [1] "/Volumes/SZ WD drive/garvan/Github/IMPC sexDiffs/mice_sex_diff/scripts"
data1 <- readRDS("../export/data_clean.rds")
#data1
This requires the selection of traits that have been measured in at least 2 centers. Consequently, rare or unusual methods and procedures are being filtered out in this step.
dat1 <-
data1 %>%
group_by(parameter_name) %>%
summarize(center_per_trait = length(unique(production_center, na.rm = TRUE)))
dat2 <- merge(data1, dat1)
dat_moreThan1center <-
dat2 %>%
filter(center_per_trait >= 2)
data2 <- dat_moreThan1center
#min(data2$center_per_trait) # as a check if there indeed are no single occurences
In this step, a grouping variable is added (found in “Parameter.Grouping.csv”) The grouping variables were decided based on functional groups and procedures
data3 <- data2 %>%
mutate(population = sprintf("%s-%s", production_center, strain_name))
group <- read.csv("../export/ParameterGrouping.csv")
data <- data3
data$parameterGroup <- group$parameter[match(data$parameter_name, group$parameter_name)]
We add a new variable, where redundant traits are combined [note however, at this stage the dataset still contains nonsensical traits, i.e. traits that may not contain any information on variance]
#head(data)
names(data)[16] <- "parameter_group"
data <- transform(data, id = match(parameter_name, unique(parameter_name)))
n1 <- length(unique(data$parameter_name)) #232
n2 <- length(unique(data$parameter_group)) #161
n3 <- length(unique(data$procedure_name)) # 26
n <- length(unique(data$id))
#n # just to check that the number of traits is 232
As the current version of this script utilizes a loop instead of tidyR code, it is here necessary to create an empty matrix, in which the returning values will be stored.
results.alltraits.grouping <- as.data.frame(cbind(c(1:n), matrix(rep(0, n*14), ncol = 14))) #number of individual results per trait = 10
names(results.alltraits.grouping) <- c("id", "lnCVR", "lnCVR_lower", "lnCVR_upper", "lnCVR_se", "lnVR", "lnVR_lower", "lnVR_upper", "lnVR_se", "lnRR", "lnRR_lower", "lnRR_upper" ,"lnRR_se" , "sampleSize", "trait")
The loop combines the functions mentioned above and fills the data matrix with results from our meta analysis. Error messages indicate traits that either did not reach convergence, or that did not return meaningful results in the meta-analysis, due to absence of variance. Those traits will be removed in later steps, outlined below.
for(t in 1:n) {
tryCatch({
data_par_age <- data_subset_parameterid_individual_by_age(data, t, age_min = 0, age_center = 100)
population_stats <- calculate_population_stats(data_par_age)
results <- create_meta_analysis_effect_sizes(population_stats)
#lnCVR, log repsonse-ratio of the coefficient of variance
cvr <- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, random = list(~1| strain_name, ~1|production_center, ~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F, data = results)
results.alltraits.grouping[t, 2] <- cvr$b
results.alltraits.grouping[t, 3] <- cvr$ci.lb
results.alltraits.grouping[t, 4] <- cvr$ci.ub
results.alltraits.grouping[t, 5] <- cvr$se
cvr
#lnVR, comparison of standard deviations
cv <- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR, random = list(~1| strain_name, ~1|production_center,~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F, data = results)
results.alltraits.grouping[t, 6] <- cv$b
results.alltraits.grouping[t, 7] <- cv$ci.lb
results.alltraits.grouping[t, 8] <- cv$ci.ub
results.alltraits.grouping[t, 9] <- cv$se
# for means, lnRR
means <- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, random = list(~1| strain_name, ~1|production_center, ~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
results.alltraits.grouping[t, 10] <- means$b
results.alltraits.grouping[t, 11] <- means$ci.lb
results.alltraits.grouping[t, 12] <- means$ci.ub
results.alltraits.grouping[t, 13] <- means$se
results.alltraits.grouping[t, 14] <- means$k
results.alltraits.grouping[t, 15] <- unique(results$trait)
}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
}
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10).
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10).
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
# Now that we have a "results" table with each of the meta-analytic means for all effect sizes of interest, we can use this table as part of the Shiny App, which will then be able to back calculate the percentage differences between males and females for mean, variance and coefficient of variance. We'll export and use this in the Shiny App. **Note that I have not dealt with convergence issues in some of these models, and so, this will need to be done down the road**
## Note Susi 31/7/2019: This dataset contains dublicated values, plus no info on what the "traits" mean. I will change Dan N's to one further belwo, that have been cleaned up already
#FILE TO USE: METACOMBO (around line 500)
#trait_meta_results <- write.csv(results.alltraits.grouping, file = "export/trait_meta_results.csv")
Procedure names, grouping variables etc. are merged back together with the results from the metafor analysis above. This requires loading of another excel sheet, “procedures.csv”
procedures <- read.csv("../export/procedures.csv")
results.alltraits.grouping$parameter_group <- data$parameter_group[match(results.alltraits.grouping$id, data$id)]
results.alltraits.grouping$procedure <- data$procedure_name[match(results.alltraits.grouping$id, data$id)]
results.alltraits.grouping$GroupingTerm <- procedures$GroupingTerm[match(results.alltraits.grouping$procedure, procedures$procedure)]
results.alltraits.grouping$parameter_name <- data$parameter_name[match(results.alltraits.grouping$id, data$id)]
meta1 <- results.alltraits.grouping
n <- length(unique(meta1$parameter_name)) # 232
Removal of traits that did not achieve convergence, are nonsensical for analysis of variance (such as traits that show variation, such as number of ribs, digits, etc). 14 traits from the originally 232 that had been included are removed.
meta_clean <- meta1[ !(meta1$id %in% c(84,144,158,160,161,162,163,165,166,167,168,221,222,231)), ]
removed <-length(unique(meta_clean$parameter_name)) #218
This is the full result dataset
kable(cbind (metacombo,metacombo)) %>%
kable_styling() %>%
scroll_box(width = "100%", height = "200px")
parameter_group | counts | procedure | GroupingTerm | lnCVR | lnCVR_lower | lnCVR_upper | lnCVR_se | lnVR | lnVR_lower | lnVR_upper | lnVR_se | lnRR | lnRR_lower | lnRR_upper | lnRR_se | parameter_group | counts | procedure | GroupingTerm | lnCVR | lnCVR_lower | lnCVR_upper | lnCVR_se | lnVR | lnVR_lower | lnVR_upper | lnVR_se | lnRR | lnRR_lower | lnRR_upper | lnRR_se |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pre-pulse inhibition | 5 | Acoustic Startle and Pre-pulse Inhibition (PPI) | Behaviour | 0.0232963 | -0.0802563 | 0.1268488 | 0.0370507 | 0.0091028 | -0.0364640 | 0.0546695 | 0.0143431 | -0.0052156 | -0.0427126 | 0.0322815 | 0.0128092 | pre-pulse inhibition | 5 | Acoustic Startle and Pre-pulse Inhibition (PPI) | Behaviour | 0.0232963 | -0.0802563 | 0.1268488 | 0.0370507 | 0.0091028 | -0.0364640 | 0.0546695 | 0.0143431 | -0.0052156 | -0.0427126 | 0.0322815 | 0.0128092 |
B cells | 4 | Immunophenotyping | Immunology | -0.0938959 | -0.2500020 | 0.0622103 | 0.0426972 | -0.0995337 | -0.2068001 | 0.0077328 | 0.0250132 | -0.0026281 | -0.1298230 | 0.1245668 | 0.0393018 | B cells | 4 | Immunophenotyping | Immunology | -0.0938959 | -0.2500020 | 0.0622103 | 0.0426972 | -0.0995337 | -0.2068001 | 0.0077328 | 0.0250132 | -0.0026281 | -0.1298230 | 0.1245668 | 0.0393018 |
cd4 nkt | 6 | Immunophenotyping | Immunology | -0.0287688 | -0.0566987 | -0.0008389 | 0.0101634 | -0.2018746 | -0.3102294 | -0.0935198 | 0.0331161 | -0.2344450 | -0.4005266 | -0.0683635 | 0.0633501 | cd4 nkt | 6 | Immunophenotyping | Immunology | -0.0287688 | -0.0566987 | -0.0008389 | 0.0101634 | -0.2018746 | -0.3102294 | -0.0935198 | 0.0331161 | -0.2344450 | -0.4005266 | -0.0683635 | 0.0633501 |
cd4 t | 7 | Immunophenotyping | Immunology | -0.1507387 | -0.2427976 | -0.0586798 | 0.0360690 | -0.1699213 | -0.2629450 | -0.0768975 | 0.0348324 | -0.0031242 | -0.0411564 | 0.0349081 | 0.0148989 | cd4 t | 7 | Immunophenotyping | Immunology | -0.1507387 | -0.2427976 | -0.0586798 | 0.0360690 | -0.1699213 | -0.2629450 | -0.0768975 | 0.0348324 | -0.0031242 | -0.0411564 | 0.0349081 | 0.0148989 |
cd8 nkt | 6 | Immunophenotyping | Immunology | -0.0424402 | -0.0782046 | -0.0066759 | 0.0119223 | -0.0300442 | -0.1823594 | 0.1222710 | 0.0533765 | 0.0035372 | -0.0573749 | 0.0644494 | 0.0205272 | cd8 nkt | 6 | Immunophenotyping | Immunology | -0.0424402 | -0.0782046 | -0.0066759 | 0.0119223 | -0.0300442 | -0.1823594 | 0.1222710 | 0.0533765 | 0.0035372 | -0.0573749 | 0.0644494 | 0.0205272 |
cd8 t | 7 | Immunophenotyping | Immunology | -0.1223681 | -0.2179976 | -0.0267387 | 0.0358727 | -0.1581698 | -0.2342579 | -0.0820816 | 0.0270229 | -0.0415806 | -0.0510391 | -0.0321221 | 0.0023119 | cd8 t | 7 | Immunophenotyping | Immunology | -0.1223681 | -0.2179976 | -0.0267387 | 0.0358727 | -0.1581698 | -0.2342579 | -0.0820816 | 0.0270229 | -0.0415806 | -0.0510391 | -0.0321221 | 0.0023119 |
cdcs | 2 | Immunophenotyping | Immunology | -0.0362947 | -0.3588637 | 0.2862742 | 0.0253867 | 0.1080248 | -0.0565718 | 0.2726213 | 0.0129540 | 0.1642541 | -0.1701520 | 0.4986601 | 0.0263183 | cdcs | 2 | Immunophenotyping | Immunology | -0.0362947 | -0.3588637 | 0.2862742 | 0.0253867 | 0.1080248 | -0.0565718 | 0.2726213 | 0.0129540 | 0.1642541 | -0.1701520 | 0.4986601 | 0.0263183 |
dn nkt | 6 | Immunophenotyping | Immunology | -0.0619371 | -0.1359380 | 0.0120637 | 0.0257746 | -0.1572129 | -0.2814342 | -0.0329915 | 0.0447163 | -0.1727105 | -0.2906356 | -0.0547854 | 0.0441034 | dn nkt | 6 | Immunophenotyping | Immunology | -0.0619371 | -0.1359380 | 0.0120637 | 0.0257746 | -0.1572129 | -0.2814342 | -0.0329915 | 0.0447163 | -0.1727105 | -0.2906356 | -0.0547854 | 0.0441034 |
dn t | 7 | Immunophenotyping | Immunology | -0.0796127 | -0.1844481 | 0.0252227 | 0.0420063 | -0.2421038 | -0.3431678 | -0.1410397 | 0.0406314 | -0.2298147 | -0.2519708 | -0.2076586 | 0.0072373 | dn t | 7 | Immunophenotyping | Immunology | -0.0796127 | -0.1844481 | 0.0252227 | 0.0420063 | -0.2421038 | -0.3431678 | -0.1410397 | 0.0406314 | -0.2298147 | -0.2519708 | -0.2076586 | 0.0072373 |
eosinophils | 3 | Hematology | Hematology | -0.0662225 | -0.2806631 | 0.1482181 | 0.0325859 | -0.0154112 | -0.4051652 | 0.3743427 | 0.0865366 | -0.0042422 | -0.2409206 | 0.2324362 | 0.0508093 | eosinophils | 3 | Hematology | Hematology | -0.0662225 | -0.2806631 | 0.1482181 | 0.0325859 | -0.0154112 | -0.4051652 | 0.3743427 | 0.0865366 | -0.0042422 | -0.2409206 | 0.2324362 | 0.0508093 |
follicular b cells | 2 | Immunophenotyping | Immunology | -0.1160077 | -0.7256692 | 0.4936538 | 0.0479814 | -0.1050194 | -0.6946364 | 0.4845977 | 0.0464039 | 0.0052427 | -0.1872381 | 0.1977236 | 0.0151486 | follicular b cells | 2 | Immunophenotyping | Immunology | -0.1160077 | -0.7256692 | 0.4936538 | 0.0479814 | -0.1050194 | -0.6946364 | 0.4845977 | 0.0464039 | 0.0052427 | -0.1872381 | 0.1977236 | 0.0151486 |
luc | 2 | Hematology | Hematology | 0.0180436 | -0.2038464 | 0.2399336 | 0.0174631 | 0.2657035 | -1.2251358 | 1.7565428 | 0.1173316 | 0.2215497 | -1.4136389 | 1.8567382 | 0.1286921 | luc | 2 | Hematology | Hematology | 0.0180436 | -0.2038464 | 0.2399336 | 0.0174631 | 0.2657035 | -1.2251358 | 1.7565428 | 0.1173316 | 0.2215497 | -1.4136389 | 1.8567382 | 0.1286921 |
lymphocytes | 2 | Hematology | Hematology | 0.0805230 | -2.2618128 | 2.4228588 | 0.1843458 | 0.1550159 | -1.0892706 | 1.3993024 | 0.0979275 | 0.0602144 | -1.0131287 | 1.1335576 | 0.0844739 | lymphocytes | 2 | Hematology | Hematology | 0.0805230 | -2.2618128 | 2.4228588 | 0.1843458 | 0.1550159 | -1.0892706 | 1.3993024 | 0.0979275 | 0.0602144 | -1.0131287 | 1.1335576 | 0.0844739 |
monocytes | 3 | Hematology | Hematology | -0.0214677 | -0.2033706 | 0.1604352 | 0.0420605 | 0.0784876 | -0.1811005 | 0.3380757 | 0.0585593 | 0.1025193 | -0.1483375 | 0.3533762 | 0.0571438 | monocytes | 3 | Hematology | Hematology | -0.0214677 | -0.2033706 | 0.1604352 | 0.0420605 | 0.0784876 | -0.1811005 | 0.3380757 | 0.0585593 | 0.1025193 | -0.1483375 | 0.3533762 | 0.0571438 |
neutrophils | 3 | Hematology | Hematology | 0.2587446 | 0.0130803 | 0.5044089 | 0.0557516 | 0.3799805 | -0.2060446 | 0.9660057 | 0.1317980 | 0.1319372 | -0.2669324 | 0.5308068 | 0.0924336 | neutrophils | 3 | Hematology | Hematology | 0.2587446 | 0.0130803 | 0.5044089 | 0.0557516 | 0.3799805 | -0.2060446 | 0.9660057 | 0.1317980 | 0.1319372 | -0.2669324 | 0.5308068 | 0.0924336 |
nk cells | 6 | Immunophenotyping | Immunology | -0.0414772 | -0.0960406 | 0.0130862 | 0.0200411 | 0.0156533 | -0.0703789 | 0.1016856 | 0.0315487 | 0.0471757 | -0.0162213 | 0.1105728 | 0.0231831 | nk cells | 6 | Immunophenotyping | Immunology | -0.0414772 | -0.0960406 | 0.0130862 | 0.0200411 | 0.0156533 | -0.0703789 | 0.1016856 | 0.0315487 | 0.0471757 | -0.0162213 | 0.1105728 | 0.0231831 |
nkt cells | 4 | Immunophenotyping | Immunology | 0.0033757 | -0.1069890 | 0.1137404 | 0.0294661 | -0.2458705 | -0.4452333 | -0.0465077 | 0.0426738 | -0.1823355 | -0.3233946 | -0.0412763 | 0.0314580 | nkt cells | 4 | Immunophenotyping | Immunology | 0.0033757 | -0.1069890 | 0.1137404 | 0.0294661 | -0.2458705 | -0.4452333 | -0.0465077 | 0.0426738 | -0.1823355 | -0.3233946 | -0.0412763 | 0.0314580 |
percentage of live gated events | 2 | Immunophenotyping | Immunology | -0.0934933 | -0.3037340 | 0.1167473 | 0.0165463 | -0.0412606 | -0.1414443 | 0.0589231 | 0.0078846 | 0.0500941 | 0.0081191 | 0.0920690 | 0.0033035 | percentage of live gated events | 2 | Immunophenotyping | Immunology | -0.0934933 | -0.3037340 | 0.1167473 | 0.0165463 | -0.0412606 | -0.1414443 | 0.0589231 | 0.0078846 | 0.0500941 | 0.0081191 | 0.0920690 | 0.0033035 |
response amplitude | 10 | Acoustic Startle and Pre-pulse Inhibition (PPI) | Behaviour | 0.0333147 | -0.0127585 | 0.0793879 | 0.0202947 | 0.2549274 | 0.1969787 | 0.3128761 | 0.0255003 | 0.2016062 | 0.1108136 | 0.2923987 | 0.0401164 | response amplitude | 10 | Acoustic Startle and Pre-pulse Inhibition (PPI) | Behaviour | 0.0333147 | -0.0127585 | 0.0793879 | 0.0202947 | 0.2549274 | 0.1969787 | 0.3128761 | 0.0255003 | 0.2016062 | 0.1108136 | 0.2923987 | 0.0401164 |
t cells | 3 | Immunophenotyping | Immunology | -0.1338701 | -0.2750284 | 0.0072883 | 0.0326594 | -0.1240786 | -0.4120104 | 0.1638531 | 0.0668611 | -0.0005749 | -0.1663201 | 0.1651702 | 0.0374233 | t cells | 3 | Immunophenotyping | Immunology | -0.1338701 | -0.2750284 | 0.0072883 | 0.0326594 | -0.1240786 | -0.4120104 | 0.1638531 | 0.0668611 | -0.0005749 | -0.1663201 | 0.1651702 | 0.0374233 |
12khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0538655 | -0.0056830 | 0.1134139 | 0.0303824 | 0.0869649 | 0.0065802 | 0.1673497 | 0.0410134 | 0.0024851 | -0.0214504 | 0.0264205 | 0.0122122 | 12khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0538655 | -0.0056830 | 0.1134139 | 0.0303824 | 0.0869649 | 0.0065802 | 0.1673497 | 0.0410134 | 0.0024851 | -0.0214504 | 0.0264205 | 0.0122122 |
18khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0238241 | -0.0331809 | 0.0808292 | 0.0290848 | 0.0250266 | -0.0488450 | 0.0988982 | 0.0376903 | -0.0200763 | -0.0431508 | 0.0029982 | 0.0117729 | 18khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0238241 | -0.0331809 | 0.0808292 | 0.0290848 | 0.0250266 | -0.0488450 | 0.0988982 | 0.0376903 | -0.0200763 | -0.0431508 | 0.0029982 | 0.0117729 |
24khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0518127 | -0.0148242 | 0.1184497 | 0.0339991 | -0.0891510 | -0.3321998 | 0.1538977 | 0.1240067 | -0.0224536 | -0.0444163 | -0.0004910 | 0.0112057 | 24khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0518127 | -0.0148242 | 0.1184497 | 0.0339991 | -0.0891510 | -0.3321998 | 0.1538977 | 0.1240067 | -0.0224536 | -0.0444163 | -0.0004910 | 0.0112057 |
30khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0170933 | -0.0533187 | 0.0875053 | 0.0359252 | -0.0344797 | -0.1017901 | 0.0328306 | 0.0343426 | -0.0497874 | -0.0748197 | -0.0247550 | 0.0127718 | 30khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | 0.0170933 | -0.0533187 | 0.0875053 | 0.0359252 | -0.0344797 | -0.1017901 | 0.0328306 | 0.0343426 | -0.0497874 | -0.0748197 | -0.0247550 | 0.0127718 |
6khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | -0.0077678 | -0.0418582 | 0.0263226 | 0.0173934 | 0.0141682 | -0.0189973 | 0.0473337 | 0.0169215 | 0.0184043 | 0.0056897 | 0.0311189 | 0.0064872 | 6khz-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | -0.0077678 | -0.0418582 | 0.0263226 | 0.0173934 | 0.0141682 | -0.0189973 | 0.0473337 | 0.0169215 | 0.0184043 | 0.0056897 | 0.0311189 | 0.0064872 |
alanine aminotransferase | 1 | Clinical Chemistry | Physiology | -0.0684217 | -0.1895020 | 0.0526586 | 0.0617768 | 0.0585179 | -0.1322507 | 0.2492866 | 0.0973327 | 0.1069442 | 0.0319934 | 0.1818950 | 0.0382409 | alanine aminotransferase | 1 | Clinical Chemistry | Physiology | -0.0684217 | -0.1895020 | 0.0526586 | 0.0617768 | 0.0585179 | -0.1322507 | 0.2492866 | 0.0973327 | 0.1069442 | 0.0319934 | 0.1818950 | 0.0382409 |
albumin | 1 | Clinical Chemistry | Physiology | 0.1133080 | 0.0451475 | 0.1814685 | 0.0347764 | 0.0559995 | -0.0080678 | 0.1200668 | 0.0326880 | -0.0567840 | -0.0732083 | -0.0403597 | 0.0083799 | albumin | 1 | Clinical Chemistry | Physiology | 0.1133080 | 0.0451475 | 0.1814685 | 0.0347764 | 0.0559995 | -0.0080678 | 0.1200668 | 0.0326880 | -0.0567840 | -0.0732083 | -0.0403597 | 0.0083799 |
alkaline phosphatase | 1 | Clinical Chemistry | Physiology | 0.1043649 | 0.0451585 | 0.1635713 | 0.0302079 | -0.3112471 | -0.3980164 | -0.2244778 | 0.0442709 | -0.4216032 | -0.4694832 | -0.3737231 | 0.0244290 | alkaline phosphatase | 1 | Clinical Chemistry | Physiology | 0.1043649 | 0.0451585 | 0.1635713 | 0.0302079 | -0.3112471 | -0.3980164 | -0.2244778 | 0.0442709 | -0.4216032 | -0.4694832 | -0.3737231 | 0.0244290 |
alpha-amylase | 1 | Clinical Chemistry | Physiology | 0.0383407 | -0.0423419 | 0.1190232 | 0.0411653 | 0.2795566 | 0.1615777 | 0.3975355 | 0.0601944 | 0.2246987 | 0.1793151 | 0.2700822 | 0.0231553 | alpha-amylase | 1 | Clinical Chemistry | Physiology | 0.0383407 | -0.0423419 | 0.1190232 | 0.0411653 | 0.2795566 | 0.1615777 | 0.3975355 | 0.0601944 | 0.2246987 | 0.1793151 | 0.2700822 | 0.0231553 |
area under glucose response curve | 1 | Intraperitoneal glucose tolerance test (IPGTT) | Metabolism | -0.1531723 | -0.2210551 | -0.0852895 | 0.0346347 | 0.2748396 | 0.1950895 | 0.3545898 | 0.0406896 | 0.4357738 | 0.3655882 | 0.5059595 | 0.0358097 | area under glucose response curve | 1 | Intraperitoneal glucose tolerance test (IPGTT) | Metabolism | -0.1531723 | -0.2210551 | -0.0852895 | 0.0346347 | 0.2748396 | 0.1950895 | 0.3545898 | 0.0406896 | 0.4357738 | 0.3655882 | 0.5059595 | 0.0358097 |
aspartate aminotransferase | 1 | Clinical Chemistry | Physiology | 0.0119165 | -0.1228287 | 0.1466617 | 0.0687488 | -0.0566968 | -0.2457779 | 0.1323843 | 0.0964717 | -0.0585577 | -0.1331777 | 0.0160624 | 0.0380722 | aspartate aminotransferase | 1 | Clinical Chemistry | Physiology | 0.0119165 | -0.1228287 | 0.1466617 | 0.0687488 | -0.0566968 | -0.2457779 | 0.1323843 | 0.0964717 | -0.0585577 | -0.1331777 | 0.0160624 | 0.0380722 |
basophil cell count | 1 | Hematology | Hematology | -0.0917931 | -0.2022487 | 0.0186624 | 0.0563559 | 0.2031265 | -0.0131549 | 0.4194079 | 0.1103497 | 0.2675772 | 0.0643028 | 0.4708516 | 0.1037133 | basophil cell count | 1 | Hematology | Hematology | -0.0917931 | -0.2022487 | 0.0186624 | 0.0563559 | 0.2031265 | -0.0131549 | 0.4194079 | 0.1103497 | 0.2675772 | 0.0643028 | 0.4708516 | 0.1037133 |
basophil differential count | 1 | Hematology | Hematology | -0.0934739 | -0.1787512 | -0.0081966 | 0.0435096 | -0.0639511 | -0.2828066 | 0.1549044 | 0.1116630 | -0.0156339 | -0.1102310 | 0.0789633 | 0.0482647 | basophil differential count | 1 | Hematology | Hematology | -0.0934739 | -0.1787512 | -0.0081966 | 0.0435096 | -0.0639511 | -0.2828066 | 0.1549044 | 0.1116630 | -0.0156339 | -0.1102310 | 0.0789633 | 0.0482647 |
bmc/body weight | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1314998 | 0.0329846 | 0.2300151 | 0.0502638 | -0.0448684 | -0.1340146 | 0.0442777 | 0.0454836 | -0.1722378 | -0.2207030 | -0.1237726 | 0.0247276 | bmc/body weight | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1314998 | 0.0329846 | 0.2300151 | 0.0502638 | -0.0448684 | -0.1340146 | 0.0442777 | 0.0454836 | -0.1722378 | -0.2207030 | -0.1237726 | 0.0247276 |
body length | 1 | Body Composition (DEXA lean/fat) | Morphology | -0.0347988 | -0.0824528 | 0.0128552 | 0.0243137 | -0.0059677 | -0.0526221 | 0.0406866 | 0.0238037 | 0.0282722 | 0.0233254 | 0.0332189 | 0.0025239 | body length | 1 | Body Composition (DEXA lean/fat) | Morphology | -0.0347988 | -0.0824528 | 0.0128552 | 0.0243137 | -0.0059677 | -0.0526221 | 0.0406866 | 0.0238037 | 0.0282722 | 0.0233254 | 0.0332189 | 0.0025239 |
body temp | 1 | Echo | Heart | -0.0325368 | -0.1066429 | 0.0415693 | 0.0378099 | -0.0303742 | -0.1044537 | 0.0437054 | 0.0377964 | 0.0018532 | -0.0005002 | 0.0042066 | 0.0012008 | body temp | 1 | Echo | Heart | -0.0325368 | -0.1066429 | 0.0415693 | 0.0378099 | -0.0303742 | -0.1044537 | 0.0437054 | 0.0377964 | 0.0018532 | -0.0005002 | 0.0042066 | 0.0012008 |
body weight | 1 | Body Weight | Morphology | 0.0245675 | -0.0420402 | 0.0911752 | 0.0339841 | 0.2335793 | 0.1694979 | 0.2976607 | 0.0326952 | 0.2096770 | 0.1938727 | 0.2254813 | 0.0080636 | body weight | 1 | Body Weight | Morphology | 0.0245675 | -0.0420402 | 0.0911752 | 0.0339841 | 0.2335793 | 0.1694979 | 0.2976607 | 0.0326952 | 0.2096770 | 0.1938727 | 0.2254813 | 0.0080636 |
body weight after experiment | 1 | Indirect Calorimetry | Metabolism | 0.0853708 | 0.0299665 | 0.1407751 | 0.0282680 | 0.2849370 | 0.2328875 | 0.3369866 | 0.0265564 | 0.2030973 | 0.1864076 | 0.2197871 | 0.0085153 | body weight after experiment | 1 | Indirect Calorimetry | Metabolism | 0.0853708 | 0.0299665 | 0.1407751 | 0.0282680 | 0.2849370 | 0.2328875 | 0.3369866 | 0.0265564 | 0.2030973 | 0.1864076 | 0.2197871 | 0.0085153 |
body weight before experiment | 1 | Indirect Calorimetry | Metabolism | 0.1053511 | 0.0412461 | 0.1694562 | 0.0327073 | 0.3038998 | 0.2435428 | 0.3642568 | 0.0307949 | 0.2008638 | 0.1816362 | 0.2200914 | 0.0098102 | body weight before experiment | 1 | Indirect Calorimetry | Metabolism | 0.1053511 | 0.0412461 | 0.1694562 | 0.0327073 | 0.3038998 | 0.2435428 | 0.3642568 | 0.0307949 | 0.2008638 | 0.1816362 | 0.2200914 | 0.0098102 |
bone area | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0981587 | 0.0272824 | 0.1690349 | 0.0361620 | 0.1286546 | 0.0533659 | 0.2039432 | 0.0384133 | 0.0315241 | 0.0003806 | 0.0626676 | 0.0158898 | bone area | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0981587 | 0.0272824 | 0.1690349 | 0.0361620 | 0.1286546 | 0.0533659 | 0.2039432 | 0.0384133 | 0.0315241 | 0.0003806 | 0.0626676 | 0.0158898 |
bone mineral content (excluding skull) | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1709230 | 0.0625642 | 0.2792818 | 0.0552861 | 0.2091372 | 0.1015600 | 0.3167143 | 0.0548873 | 0.0372537 | -0.0130828 | 0.0875902 | 0.0256824 | bone mineral content (excluding skull) | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1709230 | 0.0625642 | 0.2792818 | 0.0552861 | 0.2091372 | 0.1015600 | 0.3167143 | 0.0548873 | 0.0372537 | -0.0130828 | 0.0875902 | 0.0256824 |
bone mineral density (excluding skull) | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0542638 | -0.0881612 | 0.1966887 | 0.0726671 | 0.0492830 | -0.1087868 | 0.2073528 | 0.0806494 | 0.0012286 | -0.0187942 | 0.0212514 | 0.0102159 | bone mineral density (excluding skull) | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0542638 | -0.0881612 | 0.1966887 | 0.0726671 | 0.0492830 | -0.1087868 | 0.2073528 | 0.0806494 | 0.0012286 | -0.0187942 | 0.0212514 | 0.0102159 |
calcium | 1 | Clinical Chemistry | Physiology | 0.0097946 | -0.0464600 | 0.0660492 | 0.0287018 | 0.0135683 | -0.0424600 | 0.0695966 | 0.0285864 | 0.0036564 | -0.0000609 | 0.0073737 | 0.0018966 | calcium | 1 | Clinical Chemistry | Physiology | 0.0097946 | -0.0464600 | 0.0660492 | 0.0287018 | 0.0135683 | -0.0424600 | 0.0695966 | 0.0285864 | 0.0036564 | -0.0000609 | 0.0073737 | 0.0018966 |
cardiac output | 1 | Echo | Heart | 0.0133816 | -0.0797535 | 0.1065166 | 0.0475188 | 0.1017991 | 0.0206287 | 0.1829694 | 0.0414142 | 0.0934439 | 0.0580233 | 0.1288645 | 0.0180721 | cardiac output | 1 | Echo | Heart | 0.0133816 | -0.0797535 | 0.1065166 | 0.0475188 | 0.1017991 | 0.0206287 | 0.1829694 | 0.0414142 | 0.0934439 | 0.0580233 | 0.1288645 | 0.0180721 |
center average speed | 1 | Open Field | Behaviour | 0.0167300 | -0.0404735 | 0.0739335 | 0.0291860 | -0.0588515 | -0.1004209 | -0.0172820 | 0.0212093 | -0.0724619 | -0.1149622 | -0.0299616 | 0.0216842 | center average speed | 1 | Open Field | Behaviour | 0.0167300 | -0.0404735 | 0.0739335 | 0.0291860 | -0.0588515 | -0.1004209 | -0.0172820 | 0.0212093 | -0.0724619 | -0.1149622 | -0.0299616 | 0.0216842 |
center distance travelled | 1 | Open Field | Behaviour | -0.0162603 | -0.0733243 | 0.0408038 | 0.0291149 | -0.1060637 | -0.2023343 | -0.0097930 | 0.0491186 | -0.0940204 | -0.1945774 | 0.0065366 | 0.0513055 | center distance travelled | 1 | Open Field | Behaviour | -0.0162603 | -0.0733243 | 0.0408038 | 0.0291149 | -0.1060637 | -0.2023343 | -0.0097930 | 0.0491186 | -0.0940204 | -0.1945774 | 0.0065366 | 0.0513055 |
center permanence time | 1 | Open Field | Behaviour | -0.0253715 | -0.0826435 | 0.0319004 | 0.0292209 | -0.0255734 | -0.1014389 | 0.0502922 | 0.0387076 | -0.0035151 | -0.0902886 | 0.0832585 | 0.0442730 | center permanence time | 1 | Open Field | Behaviour | -0.0253715 | -0.0826435 | 0.0319004 | 0.0292209 | -0.0255734 | -0.1014389 | 0.0502922 | 0.0387076 | -0.0035151 | -0.0902886 | 0.0832585 | 0.0442730 |
center resting time | 1 | Open Field | Behaviour | 0.0244492 | -0.0737922 | 0.1226906 | 0.0501241 | -0.0228690 | -0.1548339 | 0.1090960 | 0.0673303 | -0.0630751 | -0.2215457 | 0.0953955 | 0.0808538 | center resting time | 1 | Open Field | Behaviour | 0.0244492 | -0.0737922 | 0.1226906 | 0.0501241 | -0.0228690 | -0.1548339 | 0.1090960 | 0.0673303 | -0.0630751 | -0.2215457 | 0.0953955 | 0.0808538 |
chloride | 1 | Clinical Chemistry | Physiology | 0.0321555 | -0.1270972 | 0.1914083 | 0.0812529 | 0.0241491 | -0.1438502 | 0.1921485 | 0.0857155 | -0.0127047 | -0.0177349 | -0.0076745 | 0.0025665 | chloride | 1 | Clinical Chemistry | Physiology | 0.0321555 | -0.1270972 | 0.1914083 | 0.0812529 | 0.0241491 | -0.1438502 | 0.1921485 | 0.0857155 | -0.0127047 | -0.0177349 | -0.0076745 | 0.0025665 |
click-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | -0.0529450 | -0.1534816 | 0.0475915 | 0.0512951 | -0.0561198 | -0.1827679 | 0.0705282 | 0.0646176 | -0.0154221 | -0.0577200 | 0.0268757 | 0.0215809 | click-evoked abr threshold | 1 | Auditory Brain Stem Response | Hearing | -0.0529450 | -0.1534816 | 0.0475915 | 0.0512951 | -0.0561198 | -0.1827679 | 0.0705282 | 0.0646176 | -0.0154221 | -0.0577200 | 0.0268757 | 0.0215809 |
creatine kinase | 1 | Clinical Chemistry | Physiology | 0.0241232 | -0.1071457 | 0.1553920 | 0.0669751 | -0.1318792 | -0.3968974 | 0.1331390 | 0.1352159 | -0.1344413 | -0.3838303 | 0.1149476 | 0.1272416 | creatine kinase | 1 | Clinical Chemistry | Physiology | 0.0241232 | -0.1071457 | 0.1553920 | 0.0669751 | -0.1318792 | -0.3968974 | 0.1331390 | 0.1352159 | -0.1344413 | -0.3838303 | 0.1149476 | 0.1272416 |
creatinine | 1 | Clinical Chemistry | Physiology | 0.0352315 | -0.0229205 | 0.0933835 | 0.0296699 | 0.1066373 | -0.2200831 | 0.4333578 | 0.1666972 | -0.0844078 | -0.1320251 | -0.0367905 | 0.0242950 | creatinine | 1 | Clinical Chemistry | Physiology | 0.0352315 | -0.0229205 | 0.0933835 | 0.0296699 | 0.1066373 | -0.2200831 | 0.4333578 | 0.1666972 | -0.0844078 | -0.1320251 | -0.0367905 | 0.0242950 |
cv | 1 | Electrocardiogram (ECG) | Heart | 0.1874544 | 0.0716631 | 0.3032457 | 0.0590783 | -0.0895722 | -0.2484833 | 0.0693388 | 0.0810786 | -0.2401301 | -0.3410322 | -0.1392280 | 0.0514816 | cv | 1 | Electrocardiogram (ECG) | Heart | 0.1874544 | 0.0716631 | 0.3032457 | 0.0590783 | -0.0895722 | -0.2484833 | 0.0693388 | 0.0810786 | -0.2401301 | -0.3410322 | -0.1392280 | 0.0514816 |
distance travelled - total | 1 | Open Field | Behaviour | -0.0187819 | -0.0858957 | 0.0483318 | 0.0342423 | -0.1272582 | -0.1997426 | -0.0547738 | 0.0369825 | -0.1121373 | -0.1816322 | -0.0426424 | 0.0354572 | distance travelled - total | 1 | Open Field | Behaviour | -0.0187819 | -0.0858957 | 0.0483318 | 0.0342423 | -0.1272582 | -0.1997426 | -0.0547738 | 0.0369825 | -0.1121373 | -0.1816322 | -0.0426424 | 0.0354572 |
ejection fraction | 1 | Echo | Heart | -0.0300111 | -0.1345066 | 0.0744844 | 0.0533150 | -0.0525735 | -0.1483174 | 0.0431705 | 0.0488499 | -0.0284086 | -0.0492579 | -0.0075592 | 0.0106376 | ejection fraction | 1 | Echo | Heart | -0.0300111 | -0.1345066 | 0.0744844 | 0.0533150 | -0.0525735 | -0.1483174 | 0.0431705 | 0.0488499 | -0.0284086 | -0.0492579 | -0.0075592 | 0.0106376 |
end-diastolic diameter | 1 | Echo | Heart | 0.1120972 | 0.0431489 | 0.1810454 | 0.0351783 | 0.1743929 | 0.0875252 | 0.2612607 | 0.0443211 | 0.0600907 | 0.0354923 | 0.0846891 | 0.0125504 | end-diastolic diameter | 1 | Echo | Heart | 0.1120972 | 0.0431489 | 0.1810454 | 0.0351783 | 0.1743929 | 0.0875252 | 0.2612607 | 0.0443211 | 0.0600907 | 0.0354923 | 0.0846891 | 0.0125504 |
end-systolic diameter | 1 | Echo | Heart | -0.0084176 | -0.0780811 | 0.0612459 | 0.0355433 | 0.0668966 | -0.0016692 | 0.1354624 | 0.0349832 | 0.0763195 | 0.0451136 | 0.1075254 | 0.0159217 | end-systolic diameter | 1 | Echo | Heart | -0.0084176 | -0.0780811 | 0.0612459 | 0.0355433 | 0.0668966 | -0.0016692 | 0.1354624 | 0.0349832 | 0.0763195 | 0.0451136 | 0.1075254 | 0.0159217 |
fasted blood glucose concentration | 1 | Intraperitoneal glucose tolerance test (IPGTT) | Metabolism | -0.0177245 | -0.1256855 | 0.0902366 | 0.0550832 | 0.0702824 | -0.0302439 | 0.1708087 | 0.0512899 | 0.0868420 | 0.0493007 | 0.1243832 | 0.0191541 | fasted blood glucose concentration | 1 | Intraperitoneal glucose tolerance test (IPGTT) | Metabolism | -0.0177245 | -0.1256855 | 0.0902366 | 0.0550832 | 0.0702824 | -0.0302439 | 0.1708087 | 0.0512899 | 0.0868420 | 0.0493007 | 0.1243832 | 0.0191541 |
fat mass | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0408799 | -0.0430149 | 0.1247746 | 0.0428042 | 0.3714313 | 0.2698790 | 0.4729837 | 0.0518134 | 0.3282080 | 0.2669032 | 0.3895129 | 0.0312786 | fat mass | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0408799 | -0.0430149 | 0.1247746 | 0.0428042 | 0.3714313 | 0.2698790 | 0.4729837 | 0.0518134 | 0.3282080 | 0.2669032 | 0.3895129 | 0.0312786 |
fat/body weight | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0777327 | -0.0119735 | 0.1674390 | 0.0457693 | 0.2020776 | 0.1083557 | 0.2957996 | 0.0478182 | 0.1235292 | 0.0638629 | 0.1831955 | 0.0304425 | fat/body weight | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.0777327 | -0.0119735 | 0.1674390 | 0.0457693 | 0.2020776 | 0.1083557 | 0.2957996 | 0.0478182 | 0.1235292 | 0.0638629 | 0.1831955 | 0.0304425 |
forelimb and hindlimb grip strength measurement mean | 1 | Grip Strength | Morphology | 0.0578158 | 0.0039998 | 0.1116318 | 0.0274577 | 0.1145986 | 0.0530521 | 0.1761451 | 0.0314018 | 0.0541888 | 0.0294838 | 0.0788938 | 0.0126048 | forelimb and hindlimb grip strength measurement mean | 1 | Grip Strength | Morphology | 0.0578158 | 0.0039998 | 0.1116318 | 0.0274577 | 0.1145986 | 0.0530521 | 0.1761451 | 0.0314018 | 0.0541888 | 0.0294838 | 0.0788938 | 0.0126048 |
forelimb grip strength measurement mean | 1 | Grip Strength | Morphology | 0.0265051 | -0.0187240 | 0.0717341 | 0.0230765 | 0.0995076 | 0.0539740 | 0.1450413 | 0.0232319 | 0.0697061 | 0.0438625 | 0.0955496 | 0.0131857 | forelimb grip strength measurement mean | 1 | Grip Strength | Morphology | 0.0265051 | -0.0187240 | 0.0717341 | 0.0230765 | 0.0995076 | 0.0539740 | 0.1450413 | 0.0232319 | 0.0697061 | 0.0438625 | 0.0955496 | 0.0131857 |
fractional shortening | 1 | Echo | Heart | -0.0148852 | -0.1161666 | 0.0863961 | 0.0516751 | -0.0575326 | -0.1558559 | 0.0407907 | 0.0501659 | -0.0413498 | -0.0567105 | -0.0259891 | 0.0078372 | fractional shortening | 1 | Echo | Heart | -0.0148852 | -0.1161666 | 0.0863961 | 0.0516751 | -0.0575326 | -0.1558559 | 0.0407907 | 0.0501659 | -0.0413498 | -0.0567105 | -0.0259891 | 0.0078372 |
free fatty acids | 1 | Clinical Chemistry | Physiology | 0.0281576 | -0.1002531 | 0.1565683 | 0.0655169 | 0.0554109 | -0.0736861 | 0.1845079 | 0.0658670 | 0.0193783 | -0.0093700 | 0.0481266 | 0.0146678 | free fatty acids | 1 | Clinical Chemistry | Physiology | 0.0281576 | -0.1002531 | 0.1565683 | 0.0655169 | 0.0554109 | -0.0736861 | 0.1845079 | 0.0658670 | 0.0193783 | -0.0093700 | 0.0481266 | 0.0146678 |
fructosamine | 1 | Clinical Chemistry | Physiology | -0.0397864 | -0.1198801 | 0.0403073 | 0.0408649 | -0.0678231 | -0.1513538 | 0.0157075 | 0.0426184 | -0.0283579 | -0.0692447 | 0.0125289 | 0.0208610 | fructosamine | 1 | Clinical Chemistry | Physiology | -0.0397864 | -0.1198801 | 0.0403073 | 0.0408649 | -0.0678231 | -0.1513538 | 0.0157075 | 0.0426184 | -0.0283579 | -0.0692447 | 0.0125289 | 0.0208610 |
glucose | 1 | Clinical Chemistry | Physiology | 0.0692601 | 0.0184025 | 0.1201176 | 0.0259482 | 0.1279473 | 0.0423001 | 0.2135946 | 0.0436984 | 0.0650887 | 0.0218496 | 0.1083279 | 0.0220612 | glucose | 1 | Clinical Chemistry | Physiology | 0.0692601 | 0.0184025 | 0.1201176 | 0.0259482 | 0.1279473 | 0.0423001 | 0.2135946 | 0.0436984 | 0.0650887 | 0.0218496 | 0.1083279 | 0.0220612 |
hdl-cholesterol | 1 | Clinical Chemistry | Physiology | -0.0650177 | -0.1255786 | -0.0044568 | 0.0308990 | 0.1724354 | 0.0701062 | 0.2747646 | 0.0522097 | 0.2606961 | 0.2180421 | 0.3033501 | 0.0217626 | hdl-cholesterol | 1 | Clinical Chemistry | Physiology | -0.0650177 | -0.1255786 | -0.0044568 | 0.0308990 | 0.1724354 | 0.0701062 | 0.2747646 | 0.0522097 | 0.2606961 | 0.2180421 | 0.3033501 | 0.0217626 |
heart weight | 1 | Heart Weight | Morphology | 0.1766832 | 0.0672843 | 0.2860820 | 0.0558168 | 0.3651806 | 0.2169840 | 0.5133772 | 0.0756119 | 0.1737615 | 0.1409037 | 0.2066193 | 0.0167645 | heart weight | 1 | Heart Weight | Morphology | 0.1766832 | 0.0672843 | 0.2860820 | 0.0558168 | 0.3651806 | 0.2169840 | 0.5133772 | 0.0756119 | 0.1737615 | 0.1409037 | 0.2066193 | 0.0167645 |
heart weight normalised against body weight | 1 | Heart Weight | Morphology | 0.0794303 | -0.0060591 | 0.1649198 | 0.0436179 | 0.0355574 | -0.0973272 | 0.1684419 | 0.0677995 | -0.0495578 | -0.0835809 | -0.0155346 | 0.0173591 | heart weight normalised against body weight | 1 | Heart Weight | Morphology | 0.0794303 | -0.0060591 | 0.1649198 | 0.0436179 | 0.0355574 | -0.0973272 | 0.1684419 | 0.0677995 | -0.0495578 | -0.0835809 | -0.0155346 | 0.0173591 |
hematocrit | 1 | Hematology | Hematology | 0.0566356 | -0.0516862 | 0.1649575 | 0.0552673 | 0.0737071 | -0.0328632 | 0.1802774 | 0.0543736 | 0.0173967 | 0.0035179 | 0.0312754 | 0.0070811 | hematocrit | 1 | Hematology | Hematology | 0.0566356 | -0.0516862 | 0.1649575 | 0.0552673 | 0.0737071 | -0.0328632 | 0.1802774 | 0.0543736 | 0.0173967 | 0.0035179 | 0.0312754 | 0.0070811 |
hemoglobin | 1 | Hematology | Hematology | 0.0867000 | 0.0269936 | 0.1464064 | 0.0304630 | 0.0867345 | 0.0194022 | 0.1540668 | 0.0343538 | 0.0051992 | -0.0080216 | 0.0184199 | 0.0067454 | hemoglobin | 1 | Hematology | Hematology | 0.0867000 | 0.0269936 | 0.1464064 | 0.0304630 | 0.0867345 | 0.0194022 | 0.1540668 | 0.0343538 | 0.0051992 | -0.0080216 | 0.0184199 | 0.0067454 |
hr | 1 | Electrocardiogram (ECG) | Heart | -0.0634490 | -0.1734699 | 0.0465718 | 0.0561341 | -0.0140315 | -0.1488474 | 0.1207843 | 0.0687849 | 0.0406617 | -0.0139214 | 0.0952448 | 0.0278490 | hr | 1 | Electrocardiogram (ECG) | Heart | -0.0634490 | -0.1734699 | 0.0465718 | 0.0561341 | -0.0140315 | -0.1488474 | 0.1207843 | 0.0687849 | 0.0406617 | -0.0139214 | 0.0952448 | 0.0278490 |
hrv | 1 | Electrocardiogram (ECG) | Heart | 0.1722593 | 0.1094294 | 0.2350892 | 0.0320567 | -0.0813225 | -0.2125462 | 0.0499011 | 0.0669521 | -0.2504990 | -0.3657436 | -0.1352545 | 0.0587993 | hrv | 1 | Electrocardiogram (ECG) | Heart | 0.1722593 | 0.1094294 | 0.2350892 | 0.0320567 | -0.0813225 | -0.2125462 | 0.0499011 | 0.0669521 | -0.2504990 | -0.3657436 | -0.1352545 | 0.0587993 |
initial response to glucose challenge | 1 | Intraperitoneal glucose tolerance test (IPGTT) | Metabolism | -0.0968821 | -0.1503780 | -0.0433861 | 0.0272943 | 0.0429971 | 0.0141807 | 0.0718136 | 0.0147026 | 0.1183626 | 0.0853242 | 0.1514009 | 0.0168566 | initial response to glucose challenge | 1 | Intraperitoneal glucose tolerance test (IPGTT) | Metabolism | -0.0968821 | -0.1503780 | -0.0433861 | 0.0272943 | 0.0429971 | 0.0141807 | 0.0718136 | 0.0147026 | 0.1183626 | 0.0853242 | 0.1514009 | 0.0168566 |
insulin | 1 | Insulin Blood Level | Metabolism | -0.0993292 | -0.3721975 | 0.1735391 | 0.1392211 | 0.1774003 | -0.1938091 | 0.5486096 | 0.1893960 | 0.4445455 | 0.0944498 | 0.7946412 | 0.1786236 | insulin | 1 | Insulin Blood Level | Metabolism | -0.0993292 | -0.3721975 | 0.1735391 | 0.1392211 | 0.1774003 | -0.1938091 | 0.5486096 | 0.1893960 | 0.4445455 | 0.0944498 | 0.7946412 | 0.1786236 |
iron | 1 | Clinical Chemistry | Physiology | -0.0974214 | -0.2141737 | 0.0193310 | 0.0595686 | -0.2534898 | -0.3963648 | -0.1106147 | 0.0728968 | -0.1527977 | -0.1930307 | -0.1125646 | 0.0205274 | iron | 1 | Clinical Chemistry | Physiology | -0.0974214 | -0.2141737 | 0.0193310 | 0.0595686 | -0.2534898 | -0.3963648 | -0.1106147 | 0.0728968 | -0.1527977 | -0.1930307 | -0.1125646 | 0.0205274 |
lactate dehydrogenase | 1 | Clinical Chemistry | Physiology | 0.0941249 | -0.0214022 | 0.2096519 | 0.0589435 | 0.1409270 | -0.0620594 | 0.3439133 | 0.1035664 | 0.0318801 | -0.1412218 | 0.2049819 | 0.0883189 | lactate dehydrogenase | 1 | Clinical Chemistry | Physiology | 0.0941249 | -0.0214022 | 0.2096519 | 0.0589435 | 0.1409270 | -0.0620594 | 0.3439133 | 0.1035664 | 0.0318801 | -0.1412218 | 0.2049819 | 0.0883189 |
latency to center entry | 1 | Open Field | Behaviour | 0.1254239 | 0.0330185 | 0.2178293 | 0.0471465 | 0.3641221 | 0.2056000 | 0.5226441 | 0.0808801 | 0.2734519 | 0.0739366 | 0.4729672 | 0.1017954 | latency to center entry | 1 | Open Field | Behaviour | 0.1254239 | 0.0330185 | 0.2178293 | 0.0471465 | 0.3641221 | 0.2056000 | 0.5226441 | 0.0808801 | 0.2734519 | 0.0739366 | 0.4729672 | 0.1017954 |
ldl-cholesterol | 1 | Clinical Chemistry | Physiology | 0.4231644 | 0.1551776 | 0.6911512 | 0.1367305 | 0.2669283 | -0.0956833 | 0.6295400 | 0.1850093 | -0.1615499 | -0.6010478 | 0.2779480 | 0.2242378 | ldl-cholesterol | 1 | Clinical Chemistry | Physiology | 0.4231644 | 0.1551776 | 0.6911512 | 0.1367305 | 0.2669283 | -0.0956833 | 0.6295400 | 0.1850093 | -0.1615499 | -0.6010478 | 0.2779480 | 0.2242378 |
lean mass | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1435756 | 0.0759342 | 0.2112170 | 0.0345115 | 0.3382447 | 0.2664863 | 0.4100031 | 0.0366121 | 0.1928945 | 0.1752425 | 0.2105465 | 0.0090063 | lean mass | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1435756 | 0.0759342 | 0.2112170 | 0.0345115 | 0.3382447 | 0.2664863 | 0.4100031 | 0.0366121 | 0.1928945 | 0.1752425 | 0.2105465 | 0.0090063 |
lean/body weight | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1953833 | 0.0912480 | 0.2995186 | 0.0531312 | 0.1840786 | 0.0863764 | 0.2817807 | 0.0498490 | -0.0122785 | -0.0257504 | 0.0011934 | 0.0068736 | lean/body weight | 1 | Body Composition (DEXA lean/fat) | Morphology | 0.1953833 | 0.0912480 | 0.2995186 | 0.0531312 | 0.1840786 | 0.0863764 | 0.2817807 | 0.0498490 | -0.0122785 | -0.0257504 | 0.0011934 | 0.0068736 |
left anterior chamber depth | 1 | Eye Morphology | Eye | -0.1854856 | -0.4305058 | 0.0595347 | 0.1250126 | -0.1534983 | -0.4007283 | 0.0937316 | 0.1261401 | 0.0331746 | 0.0284172 | 0.0379321 | 0.0024273 | left anterior chamber depth | 1 | Eye Morphology | Eye | -0.1854856 | -0.4305058 | 0.0595347 | 0.1250126 | -0.1534983 | -0.4007283 | 0.0937316 | 0.1261401 | 0.0331746 | 0.0284172 | 0.0379321 | 0.0024273 |
left corneal thickness | 1 | Eye Morphology | Eye | -0.1446634 | -0.2339950 | -0.0553319 | 0.0455782 | -0.1352252 | -0.2234178 | -0.0470327 | 0.0449970 | 0.0075283 | -0.0057082 | 0.0207648 | 0.0067535 | left corneal thickness | 1 | Eye Morphology | Eye | -0.1446634 | -0.2339950 | -0.0553319 | 0.0455782 | -0.1352252 | -0.2234178 | -0.0470327 | 0.0449970 | 0.0075283 | -0.0057082 | 0.0207648 | 0.0067535 |
left inner nuclear layer | 1 | Eye Morphology | Eye | 0.0480458 | -0.0360706 | 0.1321622 | 0.0429173 | 0.0487217 | -0.0347622 | 0.1322057 | 0.0425946 | 0.0006956 | -0.0095012 | 0.0108923 | 0.0052025 | left inner nuclear layer | 1 | Eye Morphology | Eye | 0.0480458 | -0.0360706 | 0.1321622 | 0.0429173 | 0.0487217 | -0.0347622 | 0.1322057 | 0.0425946 | 0.0006956 | -0.0095012 | 0.0108923 | 0.0052025 |
left outer nuclear layer | 1 | Eye Morphology | Eye | -0.0675012 | -0.1511666 | 0.0161641 | 0.0426872 | -0.0618025 | -0.1452865 | 0.0216814 | 0.0425946 | 0.0063811 | 0.0011702 | 0.0115921 | 0.0026587 | left outer nuclear layer | 1 | Eye Morphology | Eye | -0.0675012 | -0.1511666 | 0.0161641 | 0.0426872 | -0.0618025 | -0.1452865 | 0.0216814 | 0.0425946 | 0.0063811 | 0.0011702 | 0.0115921 | 0.0026587 |
left posterior chamber depth | 1 | Eye Morphology | Eye | -0.2631046 | -0.4734756 | -0.0527336 | 0.1073341 | -0.2687360 | -0.4790035 | -0.0584686 | 0.1072813 | -0.0026027 | -0.0146655 | 0.0094600 | 0.0061546 | left posterior chamber depth | 1 | Eye Morphology | Eye | -0.2631046 | -0.4734756 | -0.0527336 | 0.1073341 | -0.2687360 | -0.4790035 | -0.0584686 | 0.1072813 | -0.0026027 | -0.0146655 | 0.0094600 | 0.0061546 |
left total retinal thickness | 1 | Eye Morphology | Eye | -0.1975770 | -0.4386627 | 0.0435087 | 0.1230052 | -0.1932648 | -0.4269751 | 0.0404456 | 0.1192422 | 0.0027995 | -0.0034907 | 0.0090898 | 0.0032094 | left total retinal thickness | 1 | Eye Morphology | Eye | -0.1975770 | -0.4386627 | 0.0435087 | 0.1230052 | -0.1932648 | -0.4269751 | 0.0404456 | 0.1192422 | 0.0027995 | -0.0034907 | 0.0090898 | 0.0032094 |
locomotor activity | 1 | Combined SHIRPA and Dysmorphology | Behaviour | 0.0960106 | 0.0224214 | 0.1695997 | 0.0375462 | -0.0159064 | -0.0579694 | 0.0261566 | 0.0214611 | -0.1105803 | -0.1761043 | -0.0450562 | 0.0334313 | locomotor activity | 1 | Combined SHIRPA and Dysmorphology | Behaviour | 0.0960106 | 0.0224214 | 0.1695997 | 0.0375462 | -0.0159064 | -0.0579694 | 0.0261566 | 0.0214611 | -0.1105803 | -0.1761043 | -0.0450562 | 0.0334313 |
lvawd | 1 | Echo | Heart | 0.0228924 | -0.0247048 | 0.0704896 | 0.0242847 | 0.0454075 | -0.0013249 | 0.0921399 | 0.0238435 | 0.0246614 | 0.0114095 | 0.0379132 | 0.0067613 | lvawd | 1 | Echo | Heart | 0.0228924 | -0.0247048 | 0.0704896 | 0.0242847 | 0.0454075 | -0.0013249 | 0.0921399 | 0.0238435 | 0.0246614 | 0.0114095 | 0.0379132 | 0.0067613 |
lvaws | 1 | Echo | Heart | -0.0017749 | -0.2517581 | 0.2482083 | 0.1275448 | 0.0232601 | -0.1776617 | 0.2241819 | 0.1025130 | 0.0112569 | -0.0306073 | 0.0531211 | 0.0213597 | lvaws | 1 | Echo | Heart | -0.0017749 | -0.2517581 | 0.2482083 | 0.1275448 | 0.0232601 | -0.1776617 | 0.2241819 | 0.1025130 | 0.0112569 | -0.0306073 | 0.0531211 | 0.0213597 |
lvidd | 1 | Echo | Heart | 0.0453256 | -0.0241892 | 0.1148405 | 0.0354674 | 0.0981450 | 0.0208146 | 0.1754754 | 0.0394550 | 0.0528053 | 0.0378669 | 0.0677436 | 0.0076218 | lvidd | 1 | Echo | Heart | 0.0453256 | -0.0241892 | 0.1148405 | 0.0354674 | 0.0981450 | 0.0208146 | 0.1754754 | 0.0394550 | 0.0528053 | 0.0378669 | 0.0677436 | 0.0076218 |
lvids | 1 | Echo | Heart | -0.0635228 | -0.1990947 | 0.0720491 | 0.0691706 | 0.0083352 | -0.1335894 | 0.1502598 | 0.0724118 | 0.0756177 | 0.0525777 | 0.0986576 | 0.0117553 | lvids | 1 | Echo | Heart | -0.0635228 | -0.1990947 | 0.0720491 | 0.0691706 | 0.0083352 | -0.1335894 | 0.1502598 | 0.0724118 | 0.0756177 | 0.0525777 | 0.0986576 | 0.0117553 |
lvpwd | 1 | Echo | Heart | -0.0317376 | -0.1258062 | 0.0623311 | 0.0479951 | -0.0104248 | -0.1271922 | 0.1063426 | 0.0595763 | 0.0302674 | 0.0131900 | 0.0473448 | 0.0087131 | lvpwd | 1 | Echo | Heart | -0.0317376 | -0.1258062 | 0.0623311 | 0.0479951 | -0.0104248 | -0.1271922 | 0.1063426 | 0.0595763 | 0.0302674 | 0.0131900 | 0.0473448 | 0.0087131 |
lvpws | 1 | Echo | Heart | -0.0190522 | -0.1014670 | 0.0633627 | 0.0420492 | 0.0089592 | -0.0823356 | 0.1002540 | 0.0465798 | 0.0268487 | 0.0063146 | 0.0473828 | 0.0104768 | lvpws | 1 | Echo | Heart | -0.0190522 | -0.1014670 | 0.0633627 | 0.0420492 | 0.0089592 | -0.0823356 | 0.1002540 | 0.0465798 | 0.0268487 | 0.0063146 | 0.0473828 | 0.0104768 |
magnesium | 1 | Urinalysis | Physiology | 0.0161699 | -0.0231196 | 0.0554593 | 0.0200460 | -0.0513056 | -0.1167021 | 0.0140909 | 0.0333662 | -0.0413354 | -0.1135580 | 0.0308871 | 0.0368489 | magnesium | 1 | Urinalysis | Physiology | 0.0161699 | -0.0231196 | 0.0554593 | 0.0200460 | -0.0513056 | -0.1167021 | 0.0140909 | 0.0333662 | -0.0413354 | -0.1135580 | 0.0308871 | 0.0368489 |
mean cell hemoglobin concentration | 1 | Hematology | Hematology | 0.0378015 | -0.0880637 | 0.1636666 | 0.0642181 | 0.0253063 | -0.1086076 | 0.1592202 | 0.0683247 | -0.0113450 | -0.0150702 | -0.0076199 | 0.0019006 | mean cell hemoglobin concentration | 1 | Hematology | Hematology | 0.0378015 | -0.0880637 | 0.1636666 | 0.0642181 | 0.0253063 | -0.1086076 | 0.1592202 | 0.0683247 | -0.0113450 | -0.0150702 | -0.0076199 | 0.0019006 |
mean cell volume | 1 | Hematology | Hematology | 0.0039175 | -0.0957495 | 0.1035845 | 0.0508514 | -0.0030447 | -0.0961742 | 0.0900848 | 0.0475159 | -0.0063502 | -0.0099649 | -0.0027355 | 0.0018443 | mean cell volume | 1 | Hematology | Hematology | 0.0039175 | -0.0957495 | 0.1035845 | 0.0508514 | -0.0030447 | -0.0961742 | 0.0900848 | 0.0475159 | -0.0063502 | -0.0099649 | -0.0027355 | 0.0018443 |
mean corpuscular hemoglobin | 1 | Hematology | Hematology | -0.0025833 | -0.0653065 | 0.0601398 | 0.0320022 | -0.0193465 | -0.0824670 | 0.0437741 | 0.0322049 | -0.0169768 | -0.0197231 | -0.0142305 | 0.0014012 | mean corpuscular hemoglobin | 1 | Hematology | Hematology | -0.0025833 | -0.0653065 | 0.0601398 | 0.0320022 | -0.0193465 | -0.0824670 | 0.0437741 | 0.0322049 | -0.0169768 | -0.0197231 | -0.0142305 | 0.0014012 |
mean platelet volume | 1 | Hematology | Hematology | 0.0487366 | -0.0044688 | 0.1019419 | 0.0271461 | 0.0353913 | -0.0210323 | 0.0918150 | 0.0287881 | -0.0174066 | -0.0276044 | -0.0072089 | 0.0052030 | mean platelet volume | 1 | Hematology | Hematology | 0.0487366 | -0.0044688 | 0.1019419 | 0.0271461 | 0.0353913 | -0.0210323 | 0.0918150 | 0.0287881 | -0.0174066 | -0.0276044 | -0.0072089 | 0.0052030 |
mean r amplitude | 1 | Electrocardiogram (ECG) | Heart | 0.0084703 | -0.0282092 | 0.0451499 | 0.0187144 | -0.0948208 | -0.1630495 | -0.0265922 | 0.0348112 | -0.0835612 | -0.1503108 | -0.0168116 | 0.0340565 | mean r amplitude | 1 | Electrocardiogram (ECG) | Heart | 0.0084703 | -0.0282092 | 0.0451499 | 0.0187144 | -0.0948208 | -0.1630495 | -0.0265922 | 0.0348112 | -0.0835612 | -0.1503108 | -0.0168116 | 0.0340565 |
mean sr amplitude | 1 | Electrocardiogram (ECG) | Heart | 0.0284617 | -0.0131943 | 0.0701178 | 0.0212535 | -0.0876811 | -0.1270777 | -0.0482845 | 0.0201007 | -0.1130259 | -0.1558048 | -0.0702470 | 0.0218264 | mean sr amplitude | 1 | Electrocardiogram (ECG) | Heart | 0.0284617 | -0.0131943 | 0.0701178 | 0.0212535 | -0.0876811 | -0.1270777 | -0.0482845 | 0.0201007 | -0.1130259 | -0.1558048 | -0.0702470 | 0.0218264 |
number of center entries | 1 | Open Field | Behaviour | 0.0150703 | -0.0534907 | 0.0836313 | 0.0349807 | -0.0361259 | -0.0952472 | 0.0229955 | 0.0301645 | -0.0588092 | -0.1679907 | 0.0503723 | 0.0557059 | number of center entries | 1 | Open Field | Behaviour | 0.0150703 | -0.0534907 | 0.0836313 | 0.0349807 | -0.0361259 | -0.0952472 | 0.0229955 | 0.0301645 | -0.0588092 | -0.1679907 | 0.0503723 | 0.0557059 |
number of rears - total | 1 | Open Field | Behaviour | -0.0011326 | -0.1141113 | 0.1118461 | 0.0576432 | 0.1869490 | -0.0392422 | 0.4131402 | 0.1154058 | 0.1794328 | 0.0568682 | 0.3019974 | 0.0625341 | number of rears - total | 1 | Open Field | Behaviour | -0.0011326 | -0.1141113 | 0.1118461 | 0.0576432 | 0.1869490 | -0.0392422 | 0.4131402 | 0.1154058 | 0.1794328 | 0.0568682 | 0.3019974 | 0.0625341 |
others | 1 | Immunophenotyping | Immunology | -0.1684902 | -0.2596648 | -0.0773156 | 0.0465185 | -0.1515195 | -0.2435956 | -0.0594434 | 0.0469785 | 0.0196158 | 0.0049349 | 0.0342967 | 0.0074904 | others | 1 | Immunophenotyping | Immunology | -0.1684902 | -0.2596648 | -0.0773156 | 0.0465185 | -0.1515195 | -0.2435956 | -0.0594434 | 0.0469785 | 0.0196158 | 0.0049349 | 0.0342967 | 0.0074904 |
pdcs | 1 | Immunophenotyping | Immunology | -0.1732553 | -0.4003845 | 0.0538738 | 0.1158844 | -0.2572491 | -0.7186201 | 0.2041219 | 0.2353977 | -0.0915619 | -0.2522236 | 0.0690997 | 0.0819717 | pdcs | 1 | Immunophenotyping | Immunology | -0.1732553 | -0.4003845 | 0.0538738 | 0.1158844 | -0.2572491 | -0.7186201 | 0.2041219 | 0.2353977 | -0.0915619 | -0.2522236 | 0.0690997 | 0.0819717 |
percentage center time | 1 | Open Field | Behaviour | -0.0219679 | -0.0863184 | 0.0423826 | 0.0328325 | -0.0188907 | -0.0912088 | 0.0534274 | 0.0368977 | -0.0061802 | -0.0972542 | 0.0848938 | 0.0464672 | percentage center time | 1 | Open Field | Behaviour | -0.0219679 | -0.0863184 | 0.0423826 | 0.0328325 | -0.0188907 | -0.0912088 | 0.0534274 | 0.0368977 | -0.0061802 | -0.0972542 | 0.0848938 | 0.0464672 |
periphery average speed | 1 | Open Field | Behaviour | -0.0444272 | -0.1082870 | 0.0194327 | 0.0325822 | -0.1401304 | -0.2117709 | -0.0684898 | 0.0365520 | -0.0963838 | -0.1446043 | -0.0481633 | 0.0246028 | periphery average speed | 1 | Open Field | Behaviour | -0.0444272 | -0.1082870 | 0.0194327 | 0.0325822 | -0.1401304 | -0.2117709 | -0.0684898 | 0.0365520 | -0.0963838 | -0.1446043 | -0.0481633 | 0.0246028 |
periphery distance travelled | 1 | Open Field | Behaviour | -0.0313217 | -0.0918314 | 0.0291879 | 0.0308728 | -0.1342236 | -0.1874097 | -0.0810376 | 0.0271362 | -0.1037239 | -0.1714836 | -0.0359643 | 0.0345719 | periphery distance travelled | 1 | Open Field | Behaviour | -0.0313217 | -0.0918314 | 0.0291879 | 0.0308728 | -0.1342236 | -0.1874097 | -0.0810376 | 0.0271362 | -0.1037239 | -0.1714836 | -0.0359643 | 0.0345719 |
periphery permanence time | 1 | Open Field | Behaviour | -0.0369177 | -0.1277076 | 0.0538721 | 0.0463222 | -0.0294978 | -0.1006346 | 0.0416390 | 0.0362950 | 0.0077038 | -0.0137850 | 0.0291927 | 0.0109639 | periphery permanence time | 1 | Open Field | Behaviour | -0.0369177 | -0.1277076 | 0.0538721 | 0.0463222 | -0.0294978 | -0.1006346 | 0.0416390 | 0.0362950 | 0.0077038 | -0.0137850 | 0.0291927 | 0.0109639 |
periphery resting time | 1 | Open Field | Behaviour | -0.0536346 | -0.1266045 | 0.0193353 | 0.0372302 | -0.0572459 | -0.1071515 | -0.0073404 | 0.0254625 | 0.0026007 | -0.0558538 | 0.0610552 | 0.0298243 | periphery resting time | 1 | Open Field | Behaviour | -0.0536346 | -0.1266045 | 0.0193353 | 0.0372302 | -0.0572459 | -0.1071515 | -0.0073404 | 0.0254625 | 0.0026007 | -0.0558538 | 0.0610552 | 0.0298243 |
phosphorus | 1 | Clinical Chemistry | Physiology | -0.0485897 | -0.0839101 | -0.0132693 | 0.0180209 | -0.0826120 | -0.1576473 | -0.0075767 | 0.0382840 | -0.0420616 | -0.0813582 | -0.0027650 | 0.0200497 | phosphorus | 1 | Clinical Chemistry | Physiology | -0.0485897 | -0.0839101 | -0.0132693 | 0.0180209 | -0.0826120 | -0.1576473 | -0.0075767 | 0.0382840 | -0.0420616 | -0.0813582 | -0.0027650 | 0.0200497 |
platelet count | 1 | Hematology | Hematology | 0.0737198 | 0.0205862 | 0.1268534 | 0.0271095 | 0.2415135 | 0.1865330 | 0.2964940 | 0.0280518 | 0.1642192 | 0.1369820 | 0.1914563 | 0.0138968 | platelet count | 1 | Hematology | Hematology | 0.0737198 | 0.0205862 | 0.1268534 | 0.0271095 | 0.2415135 | 0.1865330 | 0.2964940 | 0.0280518 | 0.1642192 | 0.1369820 | 0.1914563 | 0.0138968 |
pnn5(6>ms) | 1 | Electrocardiogram (ECG) | Heart | 0.2906905 | 0.1716202 | 0.4097607 | 0.0607512 | -0.2926013 | -0.5272121 | -0.0579905 | 0.1197016 | -0.6004767 | -0.9244113 | -0.2765420 | 0.1652758 | pnn5(6>ms) | 1 | Electrocardiogram (ECG) | Heart | 0.2906905 | 0.1716202 | 0.4097607 | 0.0607512 | -0.2926013 | -0.5272121 | -0.0579905 | 0.1197016 | -0.6004767 | -0.9244113 | -0.2765420 | 0.1652758 |
potassium | 1 | Clinical Chemistry | Physiology | -0.0705522 | -0.2214989 | 0.0803945 | 0.0770150 | -0.0074675 | -0.1729366 | 0.1580015 | 0.0844245 | 0.0704162 | 0.0476647 | 0.0931676 | 0.0116081 | potassium | 1 | Clinical Chemistry | Physiology | -0.0705522 | -0.2214989 | 0.0803945 | 0.0770150 | -0.0074675 | -0.1729366 | 0.1580015 | 0.0844245 | 0.0704162 | 0.0476647 | 0.0931676 | 0.0116081 |
pq | 1 | Electrocardiogram (ECG) | Heart | -0.0650960 | -0.1538776 | 0.0236857 | 0.0452976 | -0.0648322 | -0.1270688 | -0.0025955 | 0.0317540 | 0.0015656 | -0.0259865 | 0.0291178 | 0.0140575 | pq | 1 | Electrocardiogram (ECG) | Heart | -0.0650960 | -0.1538776 | 0.0236857 | 0.0452976 | -0.0648322 | -0.1270688 | -0.0025955 | 0.0317540 | 0.0015656 | -0.0259865 | 0.0291178 | 0.0140575 |
pr | 1 | Electrocardiogram (ECG) | Heart | -0.0564860 | -0.1048371 | -0.0081349 | 0.0246694 | -0.0754718 | -0.1235224 | -0.0274213 | 0.0245160 | -0.0183785 | -0.0319887 | -0.0047684 | 0.0069441 | pr | 1 | Electrocardiogram (ECG) | Heart | -0.0564860 | -0.1048371 | -0.0081349 | 0.0246694 | -0.0754718 | -0.1235224 | -0.0274213 | 0.0245160 | -0.0183785 | -0.0319887 | -0.0047684 | 0.0069441 |
qrs | 1 | Electrocardiogram (ECG) | Heart | 0.0725454 | 0.0354722 | 0.1096185 | 0.0189152 | 0.0681074 | 0.0300869 | 0.1061278 | 0.0193986 | -0.0054233 | -0.0154885 | 0.0046418 | 0.0051354 | qrs | 1 | Electrocardiogram (ECG) | Heart | 0.0725454 | 0.0354722 | 0.1096185 | 0.0189152 | 0.0681074 | 0.0300869 | 0.1061278 | 0.0193986 | -0.0054233 | -0.0154885 | 0.0046418 | 0.0051354 |
qtc | 1 | Electrocardiogram (ECG) | Heart | 0.0328106 | -0.0101032 | 0.0757244 | 0.0218952 | 0.0310473 | -0.0207365 | 0.0828310 | 0.0264208 | -0.0005046 | -0.0085696 | 0.0075604 | 0.0041149 | qtc | 1 | Electrocardiogram (ECG) | Heart | 0.0328106 | -0.0101032 | 0.0757244 | 0.0218952 | 0.0310473 | -0.0207365 | 0.0828310 | 0.0264208 | -0.0005046 | -0.0085696 | 0.0075604 | 0.0041149 |
qtc dispersion | 1 | Electrocardiogram (ECG) | Heart | 0.0031258 | -0.0523919 | 0.0586435 | 0.0283259 | -0.0046501 | -0.1060530 | 0.0967528 | 0.0517371 | -0.0077373 | -0.0510162 | 0.0355416 | 0.0220815 | qtc dispersion | 1 | Electrocardiogram (ECG) | Heart | 0.0031258 | -0.0523919 | 0.0586435 | 0.0283259 | -0.0046501 | -0.1060530 | 0.0967528 | 0.0517371 | -0.0077373 | -0.0510162 | 0.0355416 | 0.0220815 |
red blood cell count | 1 | Hematology | Hematology | 0.0773455 | 0.0071933 | 0.1474977 | 0.0357926 | 0.0997278 | 0.0316996 | 0.1677560 | 0.0347089 | 0.0228493 | 0.0088583 | 0.0368404 | 0.0071384 | red blood cell count | 1 | Hematology | Hematology | 0.0773455 | 0.0071933 | 0.1474977 | 0.0357926 | 0.0997278 | 0.0316996 | 0.1677560 | 0.0347089 | 0.0228493 | 0.0088583 | 0.0368404 | 0.0071384 |
red blood cell distribution width | 1 | Hematology | Hematology | 0.1248464 | -0.0035148 | 0.2532076 | 0.0654916 | 0.1353460 | -0.0035862 | 0.2742782 | 0.0708851 | 0.0104789 | -0.0032056 | 0.0241635 | 0.0069821 | red blood cell distribution width | 1 | Hematology | Hematology | 0.1248464 | -0.0035148 | 0.2532076 | 0.0654916 | 0.1353460 | -0.0035862 | 0.2742782 | 0.0708851 | 0.0104789 | -0.0032056 | 0.0241635 | 0.0069821 |
respiration rate | 1 | Echo | Heart | -0.1384843 | -0.2178736 | -0.0590950 | 0.0405055 | -0.0703570 | -0.1795875 | 0.0388735 | 0.0557309 | 0.0611034 | 0.0227141 | 0.0994926 | 0.0195867 | respiration rate | 1 | Echo | Heart | -0.1384843 | -0.2178736 | -0.0590950 | 0.0405055 | -0.0703570 | -0.1795875 | 0.0388735 | 0.0557309 | 0.0611034 | 0.0227141 | 0.0994926 | 0.0195867 |
respiratory exchange ratio | 1 | Indirect Calorimetry | Metabolism | -0.0116565 | -0.0896490 | 0.0663361 | 0.0397928 | -0.0106530 | -0.0878483 | 0.0665424 | 0.0393861 | 0.0017027 | -0.0057348 | 0.0091402 | 0.0037947 | respiratory exchange ratio | 1 | Indirect Calorimetry | Metabolism | -0.0116565 | -0.0896490 | 0.0663361 | 0.0397928 | -0.0106530 | -0.0878483 | 0.0665424 | 0.0393861 | 0.0017027 | -0.0057348 | 0.0091402 | 0.0037947 |
right anterior chamber depth | 1 | Eye Morphology | Eye | -0.4491432 | -1.3293546 | 0.4310682 | 0.4490957 | -0.4157377 | -1.2918620 | 0.4603867 | 0.4470104 | 0.0316098 | 0.0264512 | 0.0367685 | 0.0026320 | right anterior chamber depth | 1 | Eye Morphology | Eye | -0.4491432 | -1.3293546 | 0.4310682 | 0.4490957 | -0.4157377 | -1.2918620 | 0.4603867 | 0.4470104 | 0.0316098 | 0.0264512 | 0.0367685 | 0.0026320 |
right corneal thickness | 1 | Eye Morphology | Eye | -0.0355898 | -0.2280522 | 0.1568726 | 0.0981969 | -0.0306550 | -0.1963692 | 0.1350592 | 0.0845496 | -0.0013855 | -0.0237830 | 0.0210121 | 0.0114275 | right corneal thickness | 1 | Eye Morphology | Eye | -0.0355898 | -0.2280522 | 0.1568726 | 0.0981969 | -0.0306550 | -0.1963692 | 0.1350592 | 0.0845496 | -0.0013855 | -0.0237830 | 0.0210121 | 0.0114275 |
right inner nuclear layer | 1 | Eye Morphology | Eye | -0.2545083 | -0.7633116 | 0.2542949 | 0.2595983 | -0.2785114 | -0.8373133 | 0.2802906 | 0.2851083 | -0.0175090 | -0.0664158 | 0.0313978 | 0.0249529 | right inner nuclear layer | 1 | Eye Morphology | Eye | -0.2545083 | -0.7633116 | 0.2542949 | 0.2595983 | -0.2785114 | -0.8373133 | 0.2802906 | 0.2851083 | -0.0175090 | -0.0664158 | 0.0313978 | 0.0249529 |
right outer nuclear layer | 1 | Eye Morphology | Eye | 0.0061253 | -0.0781241 | 0.0903746 | 0.0429851 | 0.0109098 | -0.0731427 | 0.0949622 | 0.0428847 | 0.0055513 | 0.0000519 | 0.0110508 | 0.0028059 | right outer nuclear layer | 1 | Eye Morphology | Eye | 0.0061253 | -0.0781241 | 0.0903746 | 0.0429851 | 0.0109098 | -0.0731427 | 0.0949622 | 0.0428847 | 0.0055513 | 0.0000519 | 0.0110508 | 0.0028059 |
right posterior chamber depth | 1 | Eye Morphology | Eye | -0.0775673 | -0.2905688 | 0.1354341 | 0.1086762 | -0.0764571 | -0.2893152 | 0.1364010 | 0.1086031 | 0.0071990 | -0.0178434 | 0.0322413 | 0.0127769 | right posterior chamber depth | 1 | Eye Morphology | Eye | -0.0775673 | -0.2905688 | 0.1354341 | 0.1086762 | -0.0764571 | -0.2893152 | 0.1364010 | 0.1086031 | 0.0071990 | -0.0178434 | 0.0322413 | 0.0127769 |
right total retinal thickness | 1 | Eye Morphology | Eye | -0.1987993 | -0.6457320 | 0.2481333 | 0.2280310 | -0.1925482 | -0.6285715 | 0.2434750 | 0.2224649 | 0.0052882 | -0.0045957 | 0.0151720 | 0.0050429 | right total retinal thickness | 1 | Eye Morphology | Eye | -0.1987993 | -0.6457320 | 0.2481333 | 0.2280310 | -0.1925482 | -0.6285715 | 0.2434750 | 0.2224649 | 0.0052882 | -0.0045957 | 0.0151720 | 0.0050429 |
rmssd | 1 | Electrocardiogram (ECG) | Heart | 0.1800273 | -0.0882317 | 0.4482864 | 0.1368694 | -0.0161048 | -0.4112809 | 0.3790712 | 0.2016241 | -0.1178703 | -0.2449843 | 0.0092436 | 0.0648552 | rmssd | 1 | Electrocardiogram (ECG) | Heart | 0.1800273 | -0.0882317 | 0.4482864 | 0.1368694 | -0.0161048 | -0.4112809 | 0.3790712 | 0.2016241 | -0.1178703 | -0.2449843 | 0.0092436 | 0.0648552 |
rp macrophage (cd19- cd11c-) | 1 | Immunophenotyping | Immunology | -0.0765771 | -0.3398075 | 0.1866533 | 0.1343037 | -0.0747691 | -0.3351316 | 0.1855933 | 0.1328404 | -0.0746396 | -0.2072980 | 0.0580188 | 0.0676841 | rp macrophage (cd19- cd11c-) | 1 | Immunophenotyping | Immunology | -0.0765771 | -0.3398075 | 0.1866533 | 0.1343037 | -0.0747691 | -0.3351316 | 0.1855933 | 0.1328404 | -0.0746396 | -0.2072980 | 0.0580188 | 0.0676841 |
rr | 1 | Electrocardiogram (ECG) | Heart | -0.0761505 | -0.1876687 | 0.0353678 | 0.0568981 | -0.0896869 | -0.2063458 | 0.0269721 | 0.0595210 | -0.0125023 | -0.0214082 | -0.0035963 | 0.0045440 | rr | 1 | Electrocardiogram (ECG) | Heart | -0.0761505 | -0.1876687 | 0.0353678 | 0.0568981 | -0.0896869 | -0.2063458 | 0.0269721 | 0.0595210 | -0.0125023 | -0.0214082 | -0.0035963 | 0.0045440 |
sodium | 1 | Clinical Chemistry | Physiology | 0.0262100 | -0.1171674 | 0.1695873 | 0.0731531 | 0.0338228 | -0.1337162 | 0.2013618 | 0.0854806 | 0.0099680 | 0.0065815 | 0.0133545 | 0.0017278 | sodium | 1 | Clinical Chemistry | Physiology | 0.0262100 | -0.1171674 | 0.1695873 | 0.0731531 | 0.0338228 | -0.1337162 | 0.2013618 | 0.0854806 | 0.0099680 | 0.0065815 | 0.0133545 | 0.0017278 |
spleen weight | 1 | Immunophenotyping | Immunology | 0.1874259 | -0.0500875 | 0.4249393 | 0.1211825 | 0.1133706 | -0.1604807 | 0.3872220 | 0.1397227 | -0.1542349 | -0.2104415 | -0.0980283 | 0.0286774 | spleen weight | 1 | Immunophenotyping | Immunology | 0.1874259 | -0.0500875 | 0.4249393 | 0.1211825 | 0.1133706 | -0.1604807 | 0.3872220 | 0.1397227 | -0.1542349 | -0.2104415 | -0.0980283 | 0.0286774 |
st | 1 | Electrocardiogram (ECG) | Heart | 0.0032888 | -0.0544512 | 0.0610288 | 0.0294597 | -0.0054976 | -0.0811810 | 0.0701858 | 0.0386147 | -0.0034902 | -0.0175917 | 0.0106113 | 0.0071948 | st | 1 | Electrocardiogram (ECG) | Heart | 0.0032888 | -0.0544512 | 0.0610288 | 0.0294597 | -0.0054976 | -0.0811810 | 0.0701858 | 0.0386147 | -0.0034902 | -0.0175917 | 0.0106113 | 0.0071948 |
stroke volume | 1 | Echo | Heart | 0.0594276 | -0.0782445 | 0.1970997 | 0.0702422 | 0.1574330 | 0.0091891 | 0.3056769 | 0.0756360 | 0.0937375 | 0.0775587 | 0.1099162 | 0.0082546 | stroke volume | 1 | Echo | Heart | 0.0594276 | -0.0782445 | 0.1970997 | 0.0702422 | 0.1574330 | 0.0091891 | 0.3056769 | 0.0756360 | 0.0937375 | 0.0775587 | 0.1099162 | 0.0082546 |
tibia length | 1 | Heart Weight | Morphology | -0.1475403 | -0.4396127 | 0.1445320 | 0.1490192 | -0.1374401 | -0.4261352 | 0.1512551 | 0.1472961 | 0.0095199 | 0.0059199 | 0.0131200 | 0.0018368 | tibia length | 1 | Heart Weight | Morphology | -0.1475403 | -0.4396127 | 0.1445320 | 0.1490192 | -0.1374401 | -0.4261352 | 0.1512551 | 0.1472961 | 0.0095199 | 0.0059199 | 0.0131200 | 0.0018368 |
total bilirubin | 1 | Clinical Chemistry | Physiology | 0.0605449 | -0.0097669 | 0.1308567 | 0.0358740 | 0.0022671 | -0.0859910 | 0.0905252 | 0.0450305 | -0.0550333 | -0.0979518 | -0.0121148 | 0.0218976 | total bilirubin | 1 | Clinical Chemistry | Physiology | 0.0605449 | -0.0097669 | 0.1308567 | 0.0358740 | 0.0022671 | -0.0859910 | 0.0905252 | 0.0450305 | -0.0550333 | -0.0979518 | -0.0121148 | 0.0218976 |
total cholesterol | 1 | Clinical Chemistry | Physiology | 0.0942595 | -0.0751596 | 0.2636786 | 0.0864399 | 0.3142208 | 0.1125613 | 0.5158803 | 0.1028894 | 0.2027583 | 0.1750477 | 0.2304688 | 0.0141383 | total cholesterol | 1 | Clinical Chemistry | Physiology | 0.0942595 | -0.0751596 | 0.2636786 | 0.0864399 | 0.3142208 | 0.1125613 | 0.5158803 | 0.1028894 | 0.2027583 | 0.1750477 | 0.2304688 | 0.0141383 |
total food intake | 1 | Indirect Calorimetry | Metabolism | -0.1192293 | -0.2542902 | 0.0158316 | 0.0689099 | -0.0964842 | -0.2564912 | 0.0635228 | 0.0816377 | 0.0267691 | -0.0233285 | 0.0768667 | 0.0255605 | total food intake | 1 | Indirect Calorimetry | Metabolism | -0.1192293 | -0.2542902 | 0.0158316 | 0.0689099 | -0.0964842 | -0.2564912 | 0.0635228 | 0.0816377 | 0.0267691 | -0.0233285 | 0.0768667 | 0.0255605 |
total protein | 1 | Clinical Chemistry | Physiology | -0.0422347 | -0.0623878 | -0.0220816 | 0.0102824 | -0.0355909 | -0.0619127 | -0.0092692 | 0.0134297 | 0.0092660 | -0.0008158 | 0.0193478 | 0.0051439 | total protein | 1 | Clinical Chemistry | Physiology | -0.0422347 | -0.0623878 | -0.0220816 | 0.0102824 | -0.0355909 | -0.0619127 | -0.0092692 | 0.0134297 | 0.0092660 | -0.0008158 | 0.0193478 | 0.0051439 |
total water intake | 1 | Indirect Calorimetry | Metabolism | -0.1457383 | -0.2373165 | -0.0541601 | 0.0467244 | -0.2097443 | -0.2681948 | -0.1512937 | 0.0298223 | -0.0654284 | -0.1374220 | 0.0065653 | 0.0367321 | total water intake | 1 | Indirect Calorimetry | Metabolism | -0.1457383 | -0.2373165 | -0.0541601 | 0.0467244 | -0.2097443 | -0.2681948 | -0.1512937 | 0.0298223 | -0.0654284 | -0.1374220 | 0.0065653 | 0.0367321 |
triglycerides | 1 | Clinical Chemistry | Physiology | -0.0320020 | -0.1233659 | 0.0593619 | 0.0466151 | 0.3268957 | 0.2087111 | 0.4450803 | 0.0602994 | 0.3473552 | 0.2592006 | 0.4355098 | 0.0449777 | triglycerides | 1 | Clinical Chemistry | Physiology | -0.0320020 | -0.1233659 | 0.0593619 | 0.0466151 | 0.3268957 | 0.2087111 | 0.4450803 | 0.0602994 | 0.3473552 | 0.2592006 | 0.4355098 | 0.0449777 |
urea (blood urea nitrogen - bun) | 1 | Clinical Chemistry | Physiology | -0.1405306 | -0.2664120 | -0.0146491 | 0.0642264 | -0.0950040 | -0.2507897 | 0.0607817 | 0.0794840 | 0.0403162 | 0.0051883 | 0.0754441 | 0.0179227 | urea (blood urea nitrogen - bun) | 1 | Clinical Chemistry | Physiology | -0.1405306 | -0.2664120 | -0.0146491 | 0.0642264 | -0.0950040 | -0.2507897 | 0.0607817 | 0.0794840 | 0.0403162 | 0.0051883 | 0.0754441 | 0.0179227 |
uric acid | 1 | Clinical Chemistry | Physiology | 0.0367062 | -0.0660619 | 0.1394744 | 0.0524337 | 0.3626957 | 0.0914512 | 0.6339402 | 0.1383926 | 0.4472349 | -0.0801891 | 0.9746588 | 0.2690988 | uric acid | 1 | Clinical Chemistry | Physiology | 0.0367062 | -0.0660619 | 0.1394744 | 0.0524337 | 0.3626957 | 0.0914512 | 0.6339402 | 0.1383926 | 0.4472349 | -0.0801891 | 0.9746588 | 0.2690988 |
white blood cell count | 1 | Hematology | Hematology | -0.0907957 | -0.1703063 | -0.0112852 | 0.0405673 | 0.1168446 | -0.0023934 | 0.2360826 | 0.0608368 | 0.1978876 | 0.1368305 | 0.2589447 | 0.0311521 | white blood cell count | 1 | Hematology | Hematology | -0.0907957 | -0.1703063 | -0.0112852 | 0.0405673 | 0.1168446 | -0.0023934 | 0.2360826 | 0.0608368 | 0.1978876 | 0.1368305 | 0.2589447 | 0.0311521 |
whole arena average speed | 1 | Open Field | Behaviour | -0.0156634 | -0.0857564 | 0.0544296 | 0.0357624 | -0.1140149 | -0.1840029 | -0.0440269 | 0.0357088 | -0.0997437 | -0.1519566 | -0.0475307 | 0.0266397 | whole arena average speed | 1 | Open Field | Behaviour | -0.0156634 | -0.0857564 | 0.0544296 | 0.0357624 | -0.1140149 | -0.1840029 | -0.0440269 | 0.0357088 | -0.0997437 | -0.1519566 | -0.0475307 | 0.0266397 |
whole arena resting time | 1 | Open Field | Behaviour | -0.0531307 | -0.1011672 | -0.0050941 | 0.0245089 | -0.0593672 | -0.1076067 | -0.0111276 | 0.0246125 | 0.0045878 | -0.0513396 | 0.0605152 | 0.0285349 | whole arena resting time | 1 | Open Field | Behaviour | -0.0531307 | -0.1011672 | -0.0050941 | 0.0245089 | -0.0593672 | -0.1076067 | -0.0111276 | 0.0246125 | 0.0045878 | -0.0513396 | 0.0605152 | 0.0285349 |
Nesting, calculating the number of parameters within each grouping term, and running the meta-analysis
metacombo_final <- metacombo %>%
group_by(GroupingTerm) %>%
nest()
# **Calculate number of parameters per grouping term
metacombo_final <- metacombo_final %>% mutate(para_per_GroupingTerm = map_dbl(data, nrow))
# For all grouping terms
metacombo_final_all <- metacombo %>%
nest()
# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate
overall1 <- metacombo_final %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)))
# **Final fixed effects meta-analyses ACROSS grouping terms, with SE of the estimate
overall_all1 <- metacombo_final_all %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)))
Re-structure data for each grouping term; delete unused variables
Behaviour <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Behaviour") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Immunology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Immunology") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Hematology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Hematology") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Hearing <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Hearing") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Physiology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Physiology") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Metabolism <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Metabolism") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Morphology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Morphology") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Heart <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Heart") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
Eye <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Eye") %>% mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)]
All <- as.data.frame(overall_all1 %>% mutate(lnCVR=.[[2]][[1]]$b, lnCVR_lower=.[[2]][[1]]$ci.lb, lnCVR_upper=.[[2]][[1]]$ci.ub, lnCVR_se=.[[2]][[1]]$se,lnVR=.[[3]][[1]]$b, lnVR_lower=.[[3]][[1]]$ci.lb, lnVR_upper=.[[3]][[1]]$ci.ub, lnVR_se=.[[3]][[1]]$se,
lnRR=.[[4]][[1]]$b, lnRR_lower=.[[4]][[1]]$ci.lb, lnRR_upper=.[[4]][[1]]$ci.ub, lnRR_se=.[[4]][[1]]$se) )[, c(5:16)]
All$lnCVR <- as.numeric(All$lnCVR)
All$lnVR <- as.numeric(All$lnVR)
All$lnRR <- as.numeric(All$lnRR)
All <- All %>% mutate(GroupingTerm = "All")
overall2 <- bind_rows(Behaviour, Morphology, Metabolism, Physiology, Immunology, Hematology, Heart, Hearing, Eye, All)
Re-order grouping terms
meta_clean$GroupingTerm <- factor(meta_clean$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye") )
meta_clean$GroupingTerm <- factor(meta_clean$GroupingTerm, rev(levels(meta_clean$GroupingTerm)))
# *Prepare data for all traits
meta.plot2.all <- meta_clean %>% select(lnCVR, lnVR, lnRR, GroupingTerm) %>% arrange(GroupingTerm)
meta.plot2.all.b <- gather(meta.plot2.all, trait, value, c(lnCVR, lnVR, lnRR))
meta.plot2.all.b$trait <- factor(meta.plot2.all.b$trait, levels =c("lnCVR","lnVR","lnRR") )
meta.plot2.all.c <- meta.plot2.all.b %>%
group_by_at(vars(trait, GroupingTerm)) %>%
summarise(malebias = sum(value > 0), femalebias = sum(value<= 0), total= malebias + femalebias,
malepercent = malebias*100/total, femalepercent = femalebias*100/total)
meta.plot2.all.c$label <- "All traits"
# restructure to create stacked bar plots
meta.plot2.all.d <- as.data.frame(meta.plot2.all.c)
meta.plot2.all.e <- gather(meta.plot2.all.d, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)
# create new sample size variable
meta.plot2.all.e$samplesize <- with(meta.plot2.all.e, ifelse(sex == "malepercent", malebias, femalebias) )
malebias_Fig2_alltraits <-
ggplot(meta.plot2.all.e) +
aes(x = GroupingTerm, y = percent, fill = sex) +
geom_col() +
geom_hline(yintercept = 50, linetype = "dashed", color = "gray40") +
geom_text(data = subset(meta.plot2.all.e, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5),
color = "white", size = 3.5) +
facet_grid(cols = vars(trait), rows = vars(label), labeller = label_wrap_gen(width = 18),
scales= 'free', space='free') +
scale_fill_brewer(palette = "Set2") +
theme_bw(base_size = 18) +
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_text(size = 12),
strip.background = element_rect(colour = NULL,linetype = "blank", fill = "gray90"),
text = element_text(size=14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.position = "none",
axis.title.x = element_blank(),
axis.title.y = element_blank() ) +
coord_flip()
#malebias_Fig2_alltraits
create column with 1= different from zero, 0= zero included in CI
meta.plot2.sig <- meta_clean %>%
mutate(lnCVRsig = ifelse(lnCVR_lower*lnCVR_upper >0, 1, 0), lnVRsig = ifelse(lnVR_lower*lnVR_upper >0, 1, 0),
lnRRsig = ifelse(lnRR_lower*lnRR_upper > 0, 1,0))
meta.plot2.sig.b <- meta.plot2.sig[, c("lnCVR", "lnVR", "lnRR", "lnCVRsig", "lnVRsig", "lnRRsig", "GroupingTerm")]
meta.plot2.sig.c <- gather(meta.plot2.sig.b, trait, value, lnCVR:lnRR)
meta.plot2.sig.c$sig <- "placeholder"
meta.plot2.sig.c$trait <- factor(meta.plot2.sig.c$trait, levels =c("lnCVR","lnVR","lnRR") )
meta.plot2.sig.c$sig <- ifelse(meta.plot2.sig.c$trait == "lnCVR", meta.plot2.sig.c$lnCVRsig,
ifelse(meta.plot2.sig.c$trait == "lnVR", meta.plot2.sig.c$lnVRsig, meta.plot2.sig.c$lnRRsig))
#choosing sex biased ln-ratios significantly larger than 0
meta.plot2.sig.malebias <- meta.plot2.sig.c %>%
group_by_at(vars(trait, GroupingTerm)) %>%
filter(sig== 1) %>%
summarise(male_sig = sum(value > 0), female_sig = sum(value < 0), total = male_sig + female_sig)
meta.plot2.sig.malebias <- ungroup(meta.plot2.sig.malebias) %>%
add_row(trait = "lnCVR", GroupingTerm = "Hearing", male_sig = 0, female_sig = 0, .before = 4) %>% #add "Hearing" for lnCVR (not filtered as only zeros)
mutate(malepercent = male_sig*100 / total, femalepercent = female_sig*100 / total)
meta.plot2.sig.malebias$label <- "CI not overlapping zero"
# restructure to create stacked bar plots
meta.plot2.sig.bothsexes <- as.data.frame(meta.plot2.sig.malebias)
meta.plot2.sig.bothsexes.b <- gather(meta.plot2.sig.bothsexes, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)
# create new sample size variable
meta.plot2.sig.bothsexes.b$samplesize <- with(meta.plot2.sig.bothsexes.b, ifelse(sex == "malepercent", male_sig, female_sig) )
# *Plot Fig2 all significant results (CI not overlapping zero):
# no sig. lnCVR for 'Hearing' in either sex; no sig. male-biased lnCVR for 'Immunology' and 'Eye, and no sig. male-biased lnVR for 'Eye'
malebias_Fig2_sigtraits <-
ggplot(meta.plot2.sig.bothsexes.b) +
aes(x = GroupingTerm, y = percent, fill = sex) +
geom_col() +
geom_hline(yintercept = 50, linetype = "dashed", color = "gray40") +
geom_text(data = subset(meta.plot2.sig.bothsexes.b, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5),
color = "white", size = 3.5) +
facet_grid(cols = vars(trait), rows = vars(label), labeller = label_wrap_gen(width = 18),
scales= 'free', space='free') +
scale_fill_brewer(palette = "Set2") +
theme_bw(base_size = 18) +
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_blank(),
strip.background = element_rect(colour = NULL,linetype = "blank", fill = "gray90"),
text = element_text(size=14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.position = "none",
axis.title.x = element_blank(),
axis.title.y = element_blank() ) +
coord_flip()
Prepare data for traits with effect size ratios > 10% larger in males
meta.plot2.over10 <- meta_clean %>% select(lnCVR, lnVR, lnRR, GroupingTerm) %>% arrange(GroupingTerm)
meta.plot2.over10.b <- gather(meta.plot2.over10, trait, value, c(lnCVR, lnVR, lnRR))
meta.plot2.over10.b$trait <- factor(meta.plot2.over10.b$trait, levels =c("lnCVR","lnVR","lnRR") )
meta.plot2.over10.c <- meta.plot2.over10.b %>%
group_by_at(vars(trait, GroupingTerm)) %>%
summarise(malebias = sum(value > log(11/10)), femalebias = sum(value < log(9/10)), total= malebias + femalebias,
malepercent = malebias*100/total, femalepercent = femalebias*100/total)
meta.plot2.over10.c$label <- "Sex difference in m/f ratios > 10%"
# restructure to create stacked bar plots
meta.plot2.over10.c <- as.data.frame(meta.plot2.over10.c)
meta.plot2.over10.d <- gather(meta.plot2.over10.c, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)
# create new sample size variable
meta.plot2.over10.d$samplesize <- with(meta.plot2.over10.d, ifelse(sex == "malepercent", malebias, femalebias) )
# *Plot Fig2 Sex difference in m/f ratio > 10%
malebias_Fig2_over10 <-
ggplot(meta.plot2.over10.d) +
aes(x = GroupingTerm, y = percent, fill = sex) +
geom_col() +
geom_hline(yintercept = 50, linetype = "dashed", color = "gray40") +
geom_text(data = subset(meta.plot2.over10.d, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5),
color = "white", size = 3.5) +
facet_grid(cols = vars(trait), rows = vars(label), labeller = label_wrap_gen(width = 18),
scales= 'free', space='free') +
scale_fill_brewer(palette = "Set2") +
theme_bw(base_size = 18) +
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_blank(),
strip.background = element_rect(colour = NULL,linetype = "blank", fill = "gray90"),
text = element_text(size=14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.position = "none",
axis.title.x = element_blank(),
axis.title.y = element_blank() ) +
coord_flip()
# malebias_Fig2_over10
Fig2 <- ggarrange(malebias_Fig2_alltraits, malebias_Fig2_sigtraits,malebias_Fig2_over10, nrow = 3, align = "v", heights = c(1.22,1,1), labels = c("A", "B", "C"))
Fig2
ggsave("Fig2.pdf", plot = Fig2, width = 6, height = 5)
Data are restructured, and grouping terms are being re-ordered
overall3 <- gather(overall2, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)
lnCVR.ci <- overall3 %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3 %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3 %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)
overall4 <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)
# re-order Grouping Terms
overall4$GroupingTerm <- factor(overall4$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall4$GroupingTerm <- factor(overall4$GroupingTerm, rev(levels(overall4$GroupingTerm)))
overall4$label <- "All traits"
kable(cbind(overall4, overall4)) %>%
kable_styling() %>%
scroll_box(width = "100%", height = "200px")
GroupingTerm | parameter | value | ci.low | ci.high | label | GroupingTerm | parameter | value | ci.low | ci.high | label |
---|---|---|---|---|---|---|---|---|---|---|---|
Behaviour | lnCVR | -0.0035049 | -0.0240688 | 0.0170591 | All traits | Behaviour | lnCVR | -0.0035049 | -0.0240688 | 0.0170591 | All traits |
Morphology | lnCVR | 0.0774453 | 0.0414171 | 0.1134734 | All traits | Morphology | lnCVR | 0.0774453 | 0.0414171 | 0.1134734 | All traits |
Metabolism | lnCVR | -0.0430831 | -0.1125945 | 0.0264283 | All traits | Metabolism | lnCVR | -0.0430831 | -0.1125945 | 0.0264283 | All traits |
Physiology | lnCVR | 0.0126792 | -0.0140094 | 0.0393678 | All traits | Physiology | lnCVR | 0.0126792 | -0.0140094 | 0.0393678 | All traits |
Immunology | lnCVR | -0.0681817 | -0.0980135 | -0.0383499 | All traits | Immunology | lnCVR | -0.0681817 | -0.0980135 | -0.0383499 | All traits |
Hematology | lnCVR | 0.0217865 | -0.0165045 | 0.0600776 | All traits | Hematology | lnCVR | 0.0217865 | -0.0165045 | 0.0600776 | All traits |
Heart | lnCVR | 0.0183839 | -0.0128375 | 0.0496053 | All traits | Heart | lnCVR | 0.0183839 | -0.0128375 | 0.0496053 | All traits |
Hearing | lnCVR | 0.0157302 | -0.0111999 | 0.0426603 | All traits | Hearing | lnCVR | 0.0157302 | -0.0111999 | 0.0426603 | All traits |
Eye | lnCVR | -0.0817932 | -0.1476821 | -0.0159043 | All traits | Eye | lnCVR | -0.0817932 | -0.1476821 | -0.0159043 | All traits |
All | lnCVR | 0.0046553 | -0.0086242 | 0.0179348 | All traits | All | lnCVR | 0.0046553 | -0.0086242 | 0.0179348 | All traits |
Behaviour | lnVR | -0.0178345 | -0.0739862 | 0.0383172 | All traits | Behaviour | lnVR | -0.0178345 | -0.0739862 | 0.0383172 | All traits |
Morphology | lnVR | 0.1514171 | 0.0818826 | 0.2209516 | All traits | Morphology | lnVR | 0.1514171 | 0.0818826 | 0.2209516 | All traits |
Metabolism | lnVR | 0.0910609 | -0.0337688 | 0.2158905 | All traits | Metabolism | lnVR | 0.0910609 | -0.0337688 | 0.2158905 | All traits |
Physiology | lnVR | 0.0359821 | -0.0277944 | 0.0997585 | All traits | Physiology | lnVR | 0.0359821 | -0.0277944 | 0.0997585 | All traits |
Immunology | lnVR | -0.1112382 | -0.1622150 | -0.0602615 | All traits | Immunology | lnVR | -0.1112382 | -0.1622150 | -0.0602615 | All traits |
Hematology | lnVR | 0.0802111 | 0.0315390 | 0.1288831 | All traits | Hematology | lnVR | 0.0802111 | 0.0315390 | 0.1288831 | All traits |
Heart | lnVR | -0.0050810 | -0.0357003 | 0.0255383 | All traits | Heart | lnVR | -0.0050810 | -0.0357003 | 0.0255383 | All traits |
Hearing | lnVR | 0.0106858 | -0.0230440 | 0.0444155 | All traits | Hearing | lnVR | 0.0106858 | -0.0230440 | 0.0444155 | All traits |
Eye | lnVR | -0.0744497 | -0.1381380 | -0.0107614 | All traits | Eye | lnVR | -0.0744497 | -0.1381380 | -0.0107614 | All traits |
All | lnVR | 0.0156634 | -0.0077457 | 0.0390726 | All traits | All | lnVR | 0.0156634 | -0.0077457 | 0.0390726 | All traits |
Behaviour | lnRR | -0.0199206 | -0.0634388 | 0.0235976 | All traits | Behaviour | lnRR | -0.0199206 | -0.0634388 | 0.0235976 | All traits |
Morphology | lnRR | 0.0678160 | 0.0072225 | 0.1284095 | All traits | Morphology | lnRR | 0.0678160 | 0.0072225 | 0.1284095 | All traits |
Metabolism | lnRR | 0.1422577 | 0.0364352 | 0.2480801 | All traits | Metabolism | lnRR | 0.1422577 | 0.0364352 | 0.2480801 | All traits |
Physiology | lnRR | 0.0163695 | -0.0443364 | 0.0770753 | All traits | Physiology | lnRR | 0.0163695 | -0.0443364 | 0.0770753 | All traits |
Immunology | lnRR | -0.0574840 | -0.1074213 | -0.0075466 | All traits | Immunology | lnRR | -0.0574840 | -0.1074213 | -0.0075466 | All traits |
Hematology | lnRR | 0.0388537 | -0.0024274 | 0.0801348 | All traits | Hematology | lnRR | 0.0388537 | -0.0024274 | 0.0801348 | All traits |
Heart | lnRR | -0.0048933 | -0.0324240 | 0.0226374 | All traits | Heart | lnRR | -0.0048933 | -0.0324240 | 0.0226374 | All traits |
Hearing | lnRR | -0.0132366 | -0.0335982 | 0.0071251 | All traits | Hearing | lnRR | -0.0132366 | -0.0335982 | 0.0071251 | All traits |
Eye | lnRR | 0.0091186 | 0.0012071 | 0.0170302 | All traits | Eye | lnRR | 0.0091186 | 0.0012071 | 0.0170302 | All traits |
All | lnRR | 0.0124332 | -0.0061474 | 0.0310138 | All traits | All | lnRR | 0.0124332 | -0.0061474 | 0.0310138 | All traits |
Preparation: Sub-Plot for Figure 3: all traits
Metameta_Fig3_alltraits <- overall4 %>%
ggplot(aes(y= GroupingTerm, x= value)) +
geom_errorbarh(aes(xmin = ci.low,
xmax = ci.high),
height = 0.1, show.legend = FALSE) +
geom_point(aes(shape = parameter), fill = 'black',
color = 'black', size = 2.2,
show.legend = FALSE) +
scale_x_continuous(limits=c(-0.24, 0.25),
breaks = c(-0.2, -0.1, 0, 0.1, 0.2),
name='Effect size') +
geom_vline(xintercept=0,
color='black',
linetype='dashed')+
facet_grid(cols = vars(parameter), rows = vars(label),
labeller = label_wrap_gen(width = 23),
scales= 'free',
space='free')+
theme_bw()+
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_text(size = 12),
strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
text = element_text(size = 14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank())
#Metameta_Fig3_alltraits
create column with 1= different from zero, 0= zero included in CI Male-biased (significant) traits
meta.male.plot3.sig <- metacombo %>%
mutate(sigCVR = ifelse(lnCVR_lower > 0, 1, 0),
sigVR = ifelse(lnVR_lower > 0, 1, 0),
sigRR = ifelse(lnRR_lower > 0, 1, 0))
#Significant subset for lnCVR
metacombo_male.plot3.CVR <- meta.male.plot3.sig %>%
filter(sigCVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_male.plot3.CVR.all <- meta.male.plot3.sig %>%
filter(sigCVR == 1) %>%
nest()
#Significant subset for lnVR
metacombo_male.plot3.VR <- meta.male.plot3.sig %>%
filter(sigVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_male.plot3.VR.all <- meta.male.plot3.sig %>%
filter(sigVR == 1) %>%
nest()
#Significant subset for lnRR
metacombo_male.plot3.RR <- meta.male.plot3.sig %>%
filter(sigRR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_male.plot3.RR.all <- meta.male.plot3.sig %>%
filter(sigRR == 1) %>%
nest()
# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate
plot3.male.meta.CVR <- metacombo_male.plot3.CVR %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.VR <- metacombo_male.plot3.VR %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.RR <- metacombo_male.plot3.RR %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
# Across all grouping terms #
plot3.male.meta.CVR.all <- metacombo_male.plot3.CVR.all %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.CVR.all <- plot3.male.meta.CVR.all %>% mutate(GroupingTerm = "All")
plot3.male.meta.VR.all <- metacombo_male.plot3.VR.all %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.VR.all <- plot3.male.meta.VR.all %>% mutate(GroupingTerm = "All")
plot3.male.meta.RR.all <- metacombo_male.plot3.RR.all %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.RR.all <- plot3.male.meta.RR.all %>% mutate(GroupingTerm = "All")
# Combine with separate grouping term results
plot3.male.meta.CVR <- bind_rows(plot3.male.meta.CVR, plot3.male.meta.CVR.all)
plot3.male.meta.VR <- bind_rows(plot3.male.meta.VR, plot3.male.meta.VR.all)
plot3.male.meta.RR <- bind_rows(plot3.male.meta.RR, plot3.male.meta.RR.all)
# **Re-structure data for each grouping term; delete un-used variables
plot3.male.meta.CVR.b <- as.data.frame(plot3.male.meta.CVR %>% group_by(GroupingTerm) %>%
mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.male.meta.CVR.b))
plot3.male.meta.CVR.b <- bind_rows(plot3.male.meta.CVR.b, add.row.hearing)
plot3.male.meta.CVR.b <- plot3.male.meta.CVR.b[order(plot3.male.meta.CVR.b$GroupingTerm),]
plot3.male.meta.VR.b <- as.data.frame(plot3.male.meta.VR %>% group_by(GroupingTerm) %>%
mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)]
plot3.male.meta.VR.b <- plot3.male.meta.VR.b[order(plot3.male.meta.VR.b$GroupingTerm),]
plot3.male.meta.RR.b <- as.data.frame(plot3.male.meta.RR %>% group_by(GroupingTerm) %>%
mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)]
plot3.male.meta.RR.b <- plot3.male.meta.RR.b[order(plot3.male.meta.RR.b$GroupingTerm),]
overall.male.plot3 <- inner_join(plot3.male.meta.CVR.b, plot3.male.meta.VR.b)
overall.male.plot3 <- inner_join(overall.male.plot3, plot3.male.meta.RR.b)
overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))
#add missing GroupingTerms for plot
overall.male.plot3 <- add_row(overall.male.plot3, GroupingTerm = "Behaviour")
overall.male.plot3 <- add_row(overall.male.plot3, GroupingTerm = "Immunology")
overall.male.plot3 <- add_row(overall.male.plot3, GroupingTerm = "Eye")
overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))
Restructure MALE data for plotting
overall3.male.sig <- gather(overall.male.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)
lnCVR.ci <- overall3.male.sig %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.male.sig %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.male.sig %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)
overall4.male.sig <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)
overall4.male.sig$label <- "CI not overlapping zero"
Plot Fig3 all significant results (CI not overlapping zero) for males
######
Metameta_Fig3_male.sig <- overall4.male.sig %>%
ggplot(aes(y= GroupingTerm, x= value)) +
geom_errorbarh(aes(xmin = ci.low,
xmax = ci.high),
height = 0.1, show.legend = FALSE) +
geom_point(aes(shape = parameter),
fill = 'mediumaquamarine', color = 'mediumaquamarine', size = 2.2,
show.legend = FALSE) +
scale_x_continuous(limits=c(0, 0.4),
breaks = c(0, 0.3),
name='Effect size') +
geom_vline(xintercept=0,
color='black',
linetype='dashed')+
facet_grid(cols = vars(parameter), rows = vars(label),
labeller = label_wrap_gen(width = 23),
scales= 'free',
space='free')+
theme_bw()+
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_text(size = 12),
strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
text = element_text(size = 14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank())
#Metameta_Fig3_male.sig
Female Fig3 sig
Prepare data for traits with CI not overlapping 0 create column with 1= different from zero, 0= zero included in CI
# female-biased traits
meta.female.plot3.sig <- metacombo %>%
mutate(sigCVR = ifelse(lnCVR_upper < 0, 1, 0),
sigVR = ifelse(lnVR_upper < 0, 1, 0),
sigRR = ifelse(lnRR_upper < 0, 1, 0))
#Significant subset for lnCVR
metacombo_female.plot3.CVR <- meta.female.plot3.sig %>%
filter(sigCVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_female.plot3.CVR.all <- meta.female.plot3.sig %>%
filter(sigCVR == 1) %>%
nest()
#Significant subset for lnVR
metacombo_female.plot3.VR <- meta.female.plot3.sig %>%
filter(sigVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_female.plot3.VR.all <- meta.female.plot3.sig %>%
filter(sigVR == 1) %>%
nest()
#Significant subset for lnRR
metacombo_female.plot3.RR <- meta.female.plot3.sig %>%
filter(sigRR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_female.plot3.RR.all <- meta.female.plot3.sig %>%
filter(sigRR == 1) %>%
nest()
# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate
plot3.female.meta.CVR <- metacombo_female.plot3.CVR %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.female.meta.VR <- metacombo_female.plot3.VR %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.female.meta.RR <- metacombo_female.plot3.RR %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
# Across all grouping terms #
plot3.female.meta.CVR.all <- metacombo_female.plot3.CVR.all %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.female.meta.CVR.all <- plot3.female.meta.CVR.all %>% mutate(GroupingTerm = "All")
plot3.female.meta.VR.all <- metacombo_female.plot3.VR.all %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.female.meta.VR.all <- plot3.female.meta.VR.all %>% mutate(GroupingTerm = "All")
plot3.female.meta.RR.all <- metacombo_female.plot3.RR.all %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.female.meta.RR.all <- plot3.female.meta.RR.all %>% mutate(GroupingTerm = "All")
# Combine with separate grouping term results
plot3.female.meta.CVR <- bind_rows(plot3.female.meta.CVR, plot3.female.meta.CVR.all)
plot3.female.meta.VR <- bind_rows(plot3.female.meta.VR, plot3.female.meta.VR.all)
plot3.female.meta.RR <- bind_rows(plot3.female.meta.RR, plot3.female.meta.RR.all)
# **Re-structure data for each grouping term; delete un-used variables
plot3.female.meta.CVR.b <- as.data.frame(plot3.female.meta.CVR %>% group_by(GroupingTerm) %>%
mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.female.meta.CVR.b))
plot3.female.meta.CVR.b <- bind_rows(plot3.female.meta.CVR.b, add.row.hearing)
plot3.female.meta.CVR.b <- plot3.female.meta.CVR.b[order(plot3.female.meta.CVR.b$GroupingTerm),]
plot3.female.meta.VR.b <- as.data.frame(plot3.female.meta.VR %>% group_by(GroupingTerm) %>%
mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)]
plot3.female.meta.VR.b <- plot3.female.meta.VR.b[order(plot3.female.meta.VR.b$GroupingTerm),]
plot3.female.meta.RR.b <- as.data.frame(plot3.female.meta.RR %>% group_by(GroupingTerm) %>%
mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)]
plot3.female.meta.RR.b <- plot3.female.meta.RR.b[order(plot3.female.meta.RR.b$GroupingTerm),]
overall.female.plot3 <- full_join(plot3.female.meta.CVR.b, plot3.female.meta.VR.b)
overall.female.plot3 <- full_join(overall.female.plot3, plot3.female.meta.RR.b)
overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, rev(levels(overall.female.plot3$GroupingTerm)))
#add missing GroupingTerms for plot POTENTIALLY DELETE
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Morphology")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Metabolism")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Hematology")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Hearing")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Eye")
#overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
#overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, rev(levels(overall.female.plot3$GroupingTerm)))
Restructure data for plotting
overall3.female.sig <- gather(overall.female.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)
lnCVR.ci <- overall3.female.sig %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.female.sig %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.female.sig %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)
overall4.female.sig <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)
overall4.female.sig$label <- "CI not overlapping zero"
Plot Fig3 all significant results (CI not overlapping zero, female )
Metameta_Fig3_female.sig <- overall4.female.sig %>%
ggplot(aes(y= GroupingTerm, x= value)) +
geom_errorbarh(aes(xmin = ci.low,
xmax = ci.high),
height = 0.1, show.legend = FALSE) +
geom_point(aes(shape = parameter),
fill = 'salmon1', color = 'salmon1', size = 2.2,
show.legend = FALSE) +
scale_x_continuous(limits=c(-0.4, 0),
breaks = c(-0.3 ,0),
name='Effect size') +
geom_vline(xintercept=0,
color='black',
linetype='dashed')+
facet_grid(cols = vars(parameter), #rows = vars(label),
#labeller = label_wrap_gen(width = 23),
scales= 'free',
space='free')+
theme_bw()+
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_text(size = 12),
strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
text = element_text(size = 14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank())
#Metameta_Fig3_female.sig
Prepare data for traits with m/f difference > 10%
create column with 1= larger, 0= diff not larger than 10%
meta.male.plot3.perc <- metacombo %>%
mutate(percCVR = ifelse(lnCVR > log (11/10), 1, 0),
percVR = ifelse(lnVR > log (11/10), 1, 0),
percRR = ifelse(lnRR > log (11/10), 1, 0))
#Significant subset for lnCVR
metacombo_male.plot3.CVR.perc <- meta.male.plot3.perc %>%
filter(percCVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_male.plot3.CVR.perc.all <- meta.male.plot3.perc %>%
filter(percCVR == 1) %>%
nest()
#Significant subset for lnVR
metacombo_male.plot3.VR.perc <- meta.male.plot3.perc %>%
filter(percVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_male.plot3.VR.perc.all <- meta.male.plot3.perc %>%
filter(percVR == 1) %>%
nest()
#Significant subset for lnRR
metacombo_male.plot3.RR.perc <- meta.male.plot3.perc %>%
filter(percRR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_male.plot3.RR.perc.all <- meta.male.plot3.perc %>%
filter(percRR == 1) %>%
nest()
# **Final fixed effects meta-analyses within grouping terms and across grouping terms, with SE of the estimate
plot3.male.meta.CVR.perc <- metacombo_male.plot3.CVR.perc %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.VR.perc <- metacombo_male.plot3.VR.perc %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.RR.perc <- metacombo_male.plot3.RR.perc %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
# Across all grouping terms #
plot3.male.meta.CVR.perc.all <- metacombo_male.plot3.CVR.perc.all %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.CVR.perc.all <- plot3.male.meta.CVR.perc.all %>% mutate(GroupingTerm = "All")
plot3.male.meta.VR.perc.all <- metacombo_male.plot3.VR.perc.all %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.VR.perc.all <- plot3.male.meta.VR.perc.all %>% mutate(GroupingTerm = "All")
plot3.male.meta.RR.perc.all <- metacombo_male.plot3.RR.perc.all %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.male.meta.RR.perc.all <- plot3.male.meta.RR.perc.all %>% mutate(GroupingTerm = "All")
# Combine with separate grouping term results
plot3.male.meta.CVR.perc <- bind_rows(plot3.male.meta.CVR.perc, plot3.male.meta.CVR.perc.all)
plot3.male.meta.VR.perc <- bind_rows(plot3.male.meta.VR.perc, plot3.male.meta.VR.perc.all)
plot3.male.meta.RR.perc <- bind_rows(plot3.male.meta.RR.perc, plot3.male.meta.RR.perc.all)
# **Re-structure data for each grouping term; delete un-used variables: "Hearing missing for all 3 parameters"
plot3.male.meta.CVR.perc.b <- as.data.frame(plot3.male.meta.CVR.perc %>% group_by(GroupingTerm) %>%
mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.male.meta.CVR.perc.b))
plot3.male.meta.CVR.perc.b <- rbind(plot3.male.meta.CVR.perc.b, add.row.hearing)
plot3.male.meta.CVR.perc.b <- plot3.male.meta.CVR.perc.b[order(plot3.male.meta.CVR.perc.b$GroupingTerm),]
plot3.male.meta.VR.perc.b <- as.data.frame(plot3.male.meta.VR.perc %>% group_by(GroupingTerm) %>%
mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.male.meta.VR.perc.b))
plot3.male.meta.VR.perc.b <- rbind(plot3.male.meta.VR.perc.b, add.row.hearing)
plot3.male.meta.VR.perc.b <- plot3.male.meta.VR.perc.b[order(plot3.male.meta.VR.perc.b$GroupingTerm),]
plot3.male.meta.RR.perc.b <- as.data.frame(plot3.male.meta.RR.perc %>% group_by(GroupingTerm) %>%
mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>%
setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b <- rbind(plot3.male.meta.RR.perc.b, add.row.hearing)
add.row.eye <- as.data.frame(t(c("Eye", NA, NA, NA, NA))) %>%
setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b <- rbind(plot3.male.meta.RR.perc.b, add.row.eye)
plot3.male.meta.RR.perc.b <- plot3.male.meta.RR.perc.b[order(plot3.male.meta.RR.perc.b$GroupingTerm),]
overall.male.plot3.perc <- full_join(plot3.male.meta.CVR.perc.b, plot3.male.meta.VR.perc.b)
overall.male.plot3.perc <- full_join(overall.male.plot3.perc, plot3.male.meta.RR.perc.b)
overall.male.plot3.perc$GroupingTerm <- factor(overall.male.plot3.perc$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.male.plot3.perc$GroupingTerm <- factor(overall.male.plot3.perc$GroupingTerm, rev(levels(overall.male.plot3.perc$GroupingTerm)))
Restructure data for plotting : Male biased, 10% difference
overall3.perc <- gather(overall.male.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)
lnCVR.ci <- overall3.perc %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.perc %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.perc %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)
overall4.male.perc <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)
overall4.male.perc$label <- "Sex difference in m/f ratios > 10%"
overall4.male.perc$value <- as.numeric(overall4.male.perc$value)
overall4.male.perc$ci.low <- as.numeric(overall4.male.perc$ci.low)
overall4.male.perc$ci.high <- as.numeric(overall4.male.perc$ci.high)
Plot Fig3 all >10% difference (male bias)
Metameta_Fig3_male.perc <- overall4.male.perc %>% #filter(., GroupingTerm != "Hearing") %>%
ggplot(aes(y= GroupingTerm, x= value)) +
geom_errorbarh(aes(xmin = ci.low,
xmax = ci.high),
height = 0.1, show.legend = FALSE) +
geom_point(aes(shape = parameter,
fill = parameter), color = 'mediumaquamarine', size = 2.2,
show.legend = FALSE) +
scale_x_continuous(limits=c(-0.2, 0.62),
breaks = c(0, 0.3),
name='Effect size') +
geom_vline(xintercept=0,
color='black',
linetype='dashed')+
facet_grid(cols = vars(parameter), rows = vars(label),
labeller = label_wrap_gen(width = 23),
scales= 'free',
space='free')+
theme_bw()+
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_blank(),
strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
text = element_text(size = 14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.title = element_blank(),
axis.title.x = element_text(hjust = 0.5, size = 14),
axis.title.y = element_blank())
# Metameta_Fig3_male.perc
Female Fig 3 >10%
meta.plot3.perc <- metacombo %>%
mutate(percCVR = ifelse(lnCVR < log (9/10), 1, 0),
percVR = ifelse(lnVR < log (9/10), 1, 0),
percRR = ifelse(lnRR < log (9/10), 1, 0))
#Significant subset for lnCVR
metacombo_plot3.CVR.perc <- meta.plot3.perc %>%
filter(percCVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_plot3.CVR.perc.all <- meta.plot3.perc %>%
filter(percCVR == 1) %>%
nest()
#Significant subset for lnVR
metacombo_plot3.VR.perc <- meta.plot3.perc %>%
filter(percVR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_plot3.VR.perc.all <- meta.plot3.perc %>%
filter(percVR == 1) %>%
nest()
#Significant subset for lnRR
metacombo_plot3.RR.perc <- meta.plot3.perc %>%
filter(percRR == 1) %>%
group_by(GroupingTerm) %>%
nest()
metacombo_plot3.RR.perc.all <- meta.plot3.perc %>%
filter(percRR == 1) %>%
nest()
# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate
plot3.meta.CVR.perc <- metacombo_plot3.CVR.perc %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.meta.VR.perc <- metacombo_plot3.VR.perc %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.meta.RR.perc <- metacombo_plot3.RR.perc %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
# Across all grouping terms #
plot3.meta.CVR.perc.all <- metacombo_plot3.CVR.perc.all %>%
mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.meta.CVR.perc.all <- plot3.meta.CVR.perc.all %>% mutate(GroupingTerm = "All")
plot3.meta.VR.perc.all <- metacombo_plot3.VR.perc.all %>%
mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.meta.VR.perc.all <- plot3.meta.VR.perc.all %>% mutate(GroupingTerm = "All")
plot3.meta.RR.perc.all <- metacombo_plot3.RR.perc.all %>%
mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )
plot3.meta.RR.perc.all <- plot3.meta.RR.perc.all %>% mutate(GroupingTerm = "All")
# Combine with separate grouping term results
plot3.meta.CVR.perc <- bind_rows(plot3.meta.CVR.perc, plot3.meta.CVR.perc.all)
plot3.meta.VR.perc <- bind_rows(plot3.meta.VR.perc, plot3.meta.VR.perc.all)
plot3.meta.RR.perc <- bind_rows(plot3.meta.RR.perc, plot3.meta.RR.perc.all)
# **Re-structure data for each grouping term; delete un-used variables: "Hearing missing for all 3 parameters"
plot3.meta.CVR.perc.b <- as.data.frame(plot3.meta.CVR.perc %>% group_by(GroupingTerm) %>%
mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.meta.CVR.perc.b))
plot3.meta.CVR.perc.b <- rbind(plot3.meta.CVR.perc.b, add.row.hearing)
plot3.meta.CVR.perc.b <- plot3.meta.CVR.perc.b[order(plot3.meta.CVR.perc.b$GroupingTerm),]
plot3.meta.VR.perc.b <- as.data.frame(plot3.meta.VR.perc %>% group_by(GroupingTerm) %>%
mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.meta.VR.perc.b))
plot3.meta.VR.perc.b <- rbind(plot3.meta.VR.perc.b, add.row.hearing)
plot3.meta.VR.perc.b <- plot3.meta.VR.perc.b[order(plot3.meta.VR.perc.b$GroupingTerm),]
plot3.meta.RR.perc.b <- as.data.frame(plot3.meta.RR.perc %>% group_by(GroupingTerm) %>%
mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)]
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b <- rbind(plot3.meta.RR.perc.b, add.row.hearing)
add.row.hematology <- as.data.frame(t(c("Hematology", NA, NA, NA, NA))) %>%
setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b <- rbind(plot3.meta.RR.perc.b, add.row.hematology)
plot3.meta.RR.perc.b <- plot3.meta.RR.perc.b[order(plot3.meta.RR.perc.b$GroupingTerm),]
overall.plot3.perc <- full_join(plot3.meta.CVR.perc.b, plot3.meta.VR.perc.b)
overall.plot3.perc <- full_join(overall.plot3.perc, plot3.meta.RR.perc.b)
overall.plot3.perc$GroupingTerm <- factor(overall.plot3.perc$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.plot3.perc$GroupingTerm <- factor(overall.plot3.perc$GroupingTerm, rev(levels(overall.plot3.perc$GroupingTerm)))
Female bias, 10 percent difference
overall3.perc <- gather(overall.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)
lnCVR.ci <- overall3.perc %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.perc %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.perc %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)
overall4.perc <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)
overall4.perc$label <- "Sex difference in m/f ratios > 10%"
overall4.perc$value <- as.numeric(overall4.perc$value)
overall4.perc$ci.low <- as.numeric(overall4.perc$ci.low)
overall4.perc$ci.high <- as.numeric(overall4.perc$ci.high)
Plot Fig3 all >10% difference (female)
Metameta_Fig3_female.perc <- overall4.perc %>%
ggplot(aes(y= GroupingTerm, x= value)) +
geom_errorbarh(aes(xmin = ci.low,
xmax = ci.high),
height = 0.1, show.legend = FALSE) +
geom_point(aes(shape = parameter),
fill = 'salmon1', color = 'salmon1', size = 2.2,
show.legend = FALSE) +
#scale_shape_manual(values =
scale_x_continuous(limits=c(-0.53, 0.2),
breaks = c(-0.3, 0),
name='Effect size') +
geom_vline(xintercept=0,
color='black',
linetype='dashed')+
facet_grid(cols = vars(parameter), #rows = vars(label),
#labeller = label_wrap_gen(width = 23),
scales= 'free',
space='free')+
theme_bw()+
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_blank(),
strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
text = element_text(size = 14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.title = element_blank(),
axis.title.x = element_text(hjust = 0.5, size = 14),
axis.title.y = element_blank())
#Metameta_Fig3_female.perc
library(ggpubr)
Fig3.bottom <- ggarrange(Metameta_Fig3_female.sig, Metameta_Fig3_male.sig, Metameta_Fig3_female.perc, Metameta_Fig3_male.perc,
ncol = 2, nrow = 2, widths = c(1, 1.20), heights = c(1, 1))
Fig3 <- ggarrange(Metameta_Fig3_alltraits, Fig3.bottom, ncol = 1, nrow = 2, heights = c(1.4, 2.5))
Fig3
#ggsave("Fig3.pdf", plot = Fig3, width = 9, height = 6)
results.allhetero.grouping <- as.data.frame(cbind(c(1:n), matrix(rep(0, n*30), ncol = 30)))
names(results.allhetero.grouping) <- c("id", "sigma2_strain.CVR", "sigma2_center.CVR", "sigma2_error.CVR", "s.nlevels.strain.CVR",
"s.nlevels.center.CVR", "s.nlevels.error.CVR", "sigma2_strain.VR", "sigma2_center.VR", "sigma2_error.VR", "s.nlevels.strain.VR",
"s.nlevels.center.VR", "s.nlevels.error.VR", "sigma2_strain.RR", "sigma2_center.RR", "sigma2_error.RR", "s.nlevels.strain.RR",
"s.nlevels.center.RR", "s.nlevels.error.RR", "lnCVR", "lnCVR_lower", "lnCVR_upper", "lnCVR_se", "lnVR", "lnVR_lower", "lnVR_upper",
"lnVR_se", "lnRR", "lnRR_lower", "lnRR_upper" ,"lnRR_se")
Parameters to extract from metafor (sigma2’s, s.nlevels)
for(t in 1:n) {
tryCatch({
data_par_age <- data_subset_parameterid_individual_by_age(data, t, age_min = 0, age_center = 100)
population_stats <- calculate_population_stats(data_par_age)
results <- create_meta_analysis_effect_sizes(population_stats)
# lnCVR, logaritm of the ratio of male and female coefficients of variance
cvr. <- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, random = list(~1| strain_name, ~1|production_center,
~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
results.allhetero.grouping[t, 2] <- cvr.$sigma2[1]
results.allhetero.grouping[t, 3] <- cvr.$sigma2[2]
results.allhetero.grouping[t, 4] <- cvr.$sigma2[3]
results.allhetero.grouping[t, 5] <- cvr.$s.nlevels[1]
results.allhetero.grouping[t, 6] <- cvr.$s.nlevels[2]
results.allhetero.grouping[t, 7] <- cvr.$s.nlevels[3]
results.allhetero.grouping[t, 20] <- cvr.$b
results.allhetero.grouping[t, 21] <- cvr.$ci.lb
results.allhetero.grouping[t, 22] <- cvr.$ci.ub
results.allhetero.grouping[t, 23] <- cvr.$se
# lnVR, male to female variability ratio (logarithm of male and female standard deviations)
vr. <- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR, random = list(~1| strain_name, ~1|production_center,
~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
results.allhetero.grouping[t, 8] <- vr.$sigma2[1]
results.allhetero.grouping[t, 9] <- vr.$sigma2[2]
results.allhetero.grouping[t, 10] <- vr.$sigma2[3]
results.allhetero.grouping[t, 11] <- vr.$s.nlevels[1]
results.allhetero.grouping[t, 12] <- vr.$s.nlevels[2]
results.allhetero.grouping[t, 13] <- vr.$s.nlevels[3]
results.allhetero.grouping[t, 24] <- vr.$b
results.allhetero.grouping[t, 25] <- vr.$ci.lb
results.allhetero.grouping[t, 26] <- vr.$ci.ub
results.allhetero.grouping[t, 27] <- vr.$se
# lnRR, response ratio (logarithm of male and female means)
rr. <- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, random = list(~1| strain_name, ~1|production_center,
~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
results.allhetero.grouping[t, 14] <- rr.$sigma2[1]
results.allhetero.grouping[t, 15] <- rr.$sigma2[2]
results.allhetero.grouping[t, 16] <- rr.$sigma2[3]
results.allhetero.grouping[t, 17] <- rr.$s.nlevels[1]
results.allhetero.grouping[t, 18] <- rr.$s.nlevels[2]
results.allhetero.grouping[t, 19] <- rr.$s.nlevels[3]
results.allhetero.grouping[t, 28] <- rr.$b
results.allhetero.grouping[t, 29] <- rr.$ci.lb
results.allhetero.grouping[t, 30] <- rr.$ci.ub
results.allhetero.grouping[t, 31] <- rr.$se
}, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
}
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10).
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10).
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
## ERROR : NA/NaN/Inf in 'y'
results.allhetero.grouping2 <- results.allhetero.grouping[results.allhetero.grouping$s.nlevels.strain.VR != 0, ]
nrow(results.allhetero.grouping2) #218
## [1] 223
Merge data sets containing metafor results with procedure etc. names
#procedures <- read.csv("../procedures.csv")
results.allhetero.grouping2$parameter_group <- data$parameter_group[match(results.allhetero.grouping2$id, data$id)]
results.allhetero.grouping2$procedure <- data$procedure_name[match(results.allhetero.grouping2$id, data$id)]
results.allhetero.grouping2$GroupingTerm <- procedures$GroupingTerm[match(results.allhetero.grouping2$procedure, procedures$procedure)]
results.allhetero.grouping2$parameter_name <- data$parameter_name[match(results.allhetero.grouping2$id, data$id)]
## *Perform meta-meta-analysis (3 for each of the 9 grouping terms: var.CVR, var.VR, var.RR)
metacombohetero_final <- metacombohetero %>%
group_by(GroupingTerm) %>%
nest()
# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate
metacombohetero$var.CVR
## [1] 0.0044991186 0.0000642816 -0.0144265163 0.0050872554 -0.0077958010
## [6] 0.0035156022 -0.0016450671 -0.0008696892 0.0052878381 0.0001600556
## [11] -0.0022444358 -0.0004257810 0.0589805219 0.0019663188 -0.0101574334
## [16] -0.0001192722 -0.0004167067 -0.0065819186 0.0025887091 0.0011066115
## [21] 0.0007330397 -2.6597488778 -2.7109304575 -2.4666374444 -2.4190625440
## [26] -6.0000000000 -1.6765385765 -2.2211382571 -2.4803820009 -2.3163922698
## [31] -2.1462407635 -1.4870666914 -2.4398886718 -2.6594232970 -1.8709366522
## [36] -2.7492091777 -6.0000000000 -2.2096017872 -2.8372243141 -2.5966411739
## [41] -2.0372635699 -1.7993498392 -1.3237500184 -2.4470323335 -2.6705595776
## [46] -2.5640560844 -2.7773725290 -2.8522607171 -2.4179073905 -1.6170447612
## [51] -2.3170574175 -2.1378338336 -2.3582684091 -2.1601625056 -2.3122643035
## [56] -2.4773261880 -6.0000000000 -6.0000000000 -1.9777983292 -2.0066354936
## [61] -1.9181629170 -2.3654858439 -2.6013619833 -2.4904490520 -2.2446924631
## [66] -2.8284106787 -2.5460751840 -2.2939104814 -1.9775239093 -2.1993504724
## [71] -1.5779079404 -2.4494899888 -2.0902610847 -3.0974151169 -2.8422362261
## [76] -1.1383433892 -1.9342984119 -2.6060756341 -2.2943035742 -1.4466019118
## [81] -2.2190572693 -1.7189444245 -1.8633043362 -6.0000000000 -6.0000000000
## [86] -6.0000000000 -6.0000000000 -1.6067160546 -2.3012113787 -6.0000000000
## [91] -1.6270233655 -2.7634753695 -2.1370173646 -2.5779218865 -2.7175087198
## [96] -6.0000000000 -1.4037959533 -1.7018930341 -2.3344943000 -2.7273106400
## [101] -6.0000000000 -4.1046049569 -2.1822373277 -1.3326681362 -2.5871679179
## [106] -2.0174660672 -3.3272866024 -3.2077188205 -1.6370100682 -2.7261740396
## [111] -2.4227226560 -2.4766881954 -1.8894986680 -2.4175072222 -3.1804162368
## [116] -2.5174764339 -6.0000000000 -1.7884303244 -2.3647153111 -2.8157523923
## [121] -3.2648326014 -3.1758796266 -2.9972690061 -2.2693356188 -1.5123342000
## [126] -2.9715994935 -2.3388729551 -0.4645348140 -2.1908600686 -1.0349121159
## [131] -6.0000000000 -6.0000000000 -0.9481380899 -1.2489473343 -1.3160742631
## [136] -2.0331918626 -1.6265101179 -1.3064359147 -2.8298766900 -2.1791320199
## [141] -0.8300329578 -2.1426880967 -1.3016303060 -1.9384089540 -6.0000000000
## [146] -2.8430641339 -2.1164664090 -1.6584679154 -6.0000000000 -2.1808169436
## [151] -2.2525802925 -2.7297180428
heterog1 <- metacombohetero_final %>%
mutate(model_heteroCVR = map(data, ~ metafor::rma.uni(yi = .x$var.CVR, sei = sqrt(1 / 2*(.x$N.CVR - 1)),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 10000, stepadj=0.5), verbose=F)),
model_heteroVR = map(data, ~ metafor::rma.uni(yi = .x$var.VR, sei = sqrt(1 / 2*(.x$N.VR - 1)),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 10000, stepadj=0.5), verbose=F)),
model_heteroRR = map(data, ~ metafor::rma.uni(yi = .x$var.RR, sei = sqrt(1 / 2*(.x$N.RR - 1)),
control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 10000, stepadj=0.5), verbose=F)))
heterog1
## # A tibble: 9 x 5
## GroupingTerm data model_heteroCVR model_heteroVR model_heteroRR
## <fct> <list> <list> <list> <list>
## 1 Behaviour <tibble [18 ×… <rma.uni> <rma.uni> <rma.uni>
## 2 Immunology <tibble [19 ×… <rma.uni> <rma.uni> <rma.uni>
## 3 Hematology <tibble [17 ×… <rma.uni> <rma.uni> <rma.uni>
## 4 Hearing <tibble [6 × … <rma.uni> <rma.uni> <rma.uni>
## 5 Physiology <tibble [26 ×… <rma.uni> <rma.uni> <rma.uni>
## 6 Metabolism <tibble [9 × … <rma.uni> <rma.uni> <rma.uni>
## 7 Morphology <tibble [16 ×… <rma.uni> <rma.uni> <rma.uni>
## 8 Heart <tibble [29 ×… <rma.uni> <rma.uni> <rma.uni>
## 9 Eye <tibble [12 ×… <rma.uni> <rma.uni> <rma.uni>
# **Re-structure data for each grouping term; extract heterogenenity/variance terms; delete un-used variables
Behaviour. <- heterog1 %>% filter(., GroupingTerm == "Behaviour") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Immunology. <- heterog1 %>% filter(., GroupingTerm == "Immunology") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Hematology. <- heterog1 %>% filter(., GroupingTerm == "Hematology") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Hearing. <- heterog1 %>% filter(., GroupingTerm == "Hearing") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Physiology. <- heterog1 %>% filter(., GroupingTerm == "Physiology") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Metabolism. <- heterog1 %>% filter(., GroupingTerm == "Metabolism") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Morphology. <- heterog1 %>% filter(., GroupingTerm == "Morphology") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Heart. <- heterog1 %>% filter(., GroupingTerm == "Heart") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
Eye. <- heterog1 %>% filter(., GroupingTerm == "Eye") %>% select(., -data) %>% mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
select(., GroupingTerm, heteroCVR:heteroRR_se)
heterog2 <- bind_rows(Behaviour., Morphology., Metabolism., Physiology., Immunology., Hematology., Heart., Hearing., Eye.)
#str(heterog2)
Restructure data for plotting
heterog3 <- gather(heterog2, parameter, value, c(heteroCVR, heteroVR, heteroRR), factor_key= TRUE)
heteroCVR.ci <- heterog3 %>% filter(parameter == "heteroCVR") %>% mutate(ci.low = heteroCVR_lower, ci.high = heteroCVR_upper)
heteroVR.ci <- heterog3 %>% filter(parameter == "heteroVR") %>% mutate(ci.low = heteroVR_lower, ci.high = heteroVR_upper)
heteroRR.ci <- heterog3 %>% filter(parameter == "heteroRR") %>% mutate(ci.low = heteroRR_lower, ci.high = heteroRR_upper)
heterog4 <- bind_rows(heteroCVR.ci, heteroVR.ci, heteroRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)
# **Re-order grouping terms
heterog4$GroupingTerm <- factor(heterog4$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye") )
heterog4$GroupingTerm <- factor(heterog4$GroupingTerm, rev(levels(heterog4$GroupingTerm)))
heterog4$label <- "All traits"
#write.csv(heterog4, "heterog4.csv")
Plot Fig4 all traits
Metameta_Fig4_alltraits <- heterog4 %>%
ggplot(aes(y= GroupingTerm, x= value)) +
geom_errorbarh(aes(xmin = ci.low,
xmax = ci.high),
height = 0.1, show.legend = FALSE) +
geom_point(aes(shape = parameter,
fill = parameter, color = parameter), size = 2.2,
show.legend = FALSE) +
scale_x_continuous(limits=c(-7.0, 1),
#breaks = c(-2.0, -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5, 2.0),
name='Effect size') +
facet_grid(cols = vars(parameter), rows = vars(label),
labeller = label_wrap_gen(width = 23),
scales= 'free',
space='free')+
theme_bw()+
theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
strip.text.x = element_text(size = 12),
strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
text = element_text(size = 14),
panel.spacing = unit(0.5, "lines"),
panel.border= element_blank(),
axis.line=element_line(),
panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
panel.grid.minor.y = element_blank(),
panel.grid.minor.x = element_blank(),
legend.title = element_blank(),
axis.title.x = element_blank(),
axis.title.y = element_blank())
Metameta_Fig4_alltraits
#ggsave("Fig4.pdf", plot = Metameta_Fig4_alltraits, width = 7, height = 6)