• Set up
    • Packages
    • Loading functions that are necessary
      • Preparation of raw data
      • Functions for preparing the data for meta analyses
    • Clean data
  • Meta analysis, Phase 1
    • Preparation
      • Define population variable & add grouping variables
      • Assign each unique parameter_name (=trait,use trait variable) a unique number (‘id’)
      • Create a matrix to store results for all traits
    • LOOP, to run meta-analysis on all traits
    • Merging datasets
  • Meta-analysis, Phase 2
    • Dealing with Correlated Parameters, preparation
      • Collapsing and merging correlated parameters
      • Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size)
    • Perform meta-analyses on correlated sub-traits, using robumeta
      • Extract and save parameter estimates
      • Clean-up and rename
    • Visualisation
    • Overall results of second order meta anlaysis (Figure 4a)
    • Heterogeneity
  • Meta-analysis, Phase 3
    • Perform meta-analyses (3 for each of the 9 grouping terms: lnCVR, lnVR, lnRR)
    • Prepare data
      • Plot FIGURE 2 [4 in ms] (First-order meta analysis results)
      • Prepare data for traits with CI not overlapping 0
      • Create final combined Figure (Figure 2)
        • Restructure data for plotting
        • Plot FIGURE 4 (Second-order meta analysis results)
        • Figure 4B: Prepare data for traits with CI not overlapping 0
        • Female Figure, significant traits
        • Fig4 C >10%
        • Male Fig 3 > 10% (male biased traits)
        • Restructure data for plotting
        • Plot Fig3 all plots combined
          • FIGURE 4 (Second-order meta analysis on heterogeneity)
          • Create matrix to store results for all traits
          • LOOP
          • Exclude traits
          • Dealing with correlated parameters
          • Merge the two data sets (the new [robu_all.] and the initial [uncorrelated sub-traits with count = 1])
          • Last step: meta-meta-analysis of heterogeneity
          • Heterogeneity PLOTS
          • Plot FIGURE 4 (5 in ms) (Second-order meta analysis on heterogeneity)

Set up

Packages

library(readr)
library(dplyr)
library(metafor)
library(devtools)
library(purrr)
library(tidyverse)
library(tibble)
library(kableExtra)
library(robumeta)
library(ggpubr)
library(ggplot2)

Loading functions that are necessary

Preparation of raw data

  1. Data loading and cleaning of the csv file This step we have already done and provide a cleaned up file which is less computing intensive. However, cvs
# loads the raw data, setting some default types for various columns

load_raw <- function(filename) {
  read_csv(filename, 
                              col_types = cols(
                                .default = col_character(),
                                project_id = col_character(),
                                id = col_character(),
                                parameter_id = col_character(),
                                age_in_days = col_integer(),
                                date_of_experiment = col_datetime(format = ""),
                                weight = col_double(),
                                phenotyping_center_id = col_character(),
                                production_center_id = col_character(),
                                weight_date = col_datetime(format = ""),
                                date_of_birth = col_datetime(format = ""),
                                procedure_id = col_character(),
                                pipeline_id = col_character(),
                                biological_sample_id = col_character(),
                                biological_model_id = col_character(),
                                weight_days_old = col_integer(),
                                datasource_id = col_character(),
                                experiment_id = col_character(),
                                data_point = col_double(),
                                age_in_weeks = col_integer(),
                                `_version_` = col_character()
                              )
  )
}

# Apply some standard cleaning to the data
clean_raw_data <- function(mydata) {
  mydata %>% 
    
    # Fileter to IMPC source (recommened by Jeremey in email to Susi on 20 Aug 2018)
    filter(datasource_name == 'IMPC') %>%
    
    # standardise trait names
    mutate(parameter_name = tolower(parameter_name) ) %>%
    
    # remove extreme ages
    filter(age_in_days > 0 & age_in_days < 500) %>% 

    # remove NAs 
    filter(!is.na(data_point)) %>%
  
    # subset to reasonable set of variables
    # date_of_experiment: Jeremy suggested using as an indicator of batch-level effects
    select(production_center, strain_name, strain_accession_id, biological_sample_id, pipeline_stable_id, procedure_group, procedure_name, sex, date_of_experiment, age_in_days, weight, parameter_name, data_point) %>% 
    arrange(production_center, biological_sample_id, age_in_days)
}
  1. Subsetting the data to choose only one datapoint per individual per trait
# this is a necessary step for the loop across all traits 
data_subset_parameterid_individual_by_age <- function(mydata, parameter, age_min, age_center) {
  tmp <- mydata %>%
    filter(age_in_days >= age_min,
           id == parameter) %>%
    # take results for single individual closest to age_center
    mutate(age_diff = abs(age_center - age_in_days)) %>%
    group_by(biological_sample_id) %>%
    filter(age_diff == min(age_diff)) %>%
    select(-age_diff)
  
  # still some individuals with multiple records (because same individual appears under different procedures, so filter to one record)
  j <- match(unique(tmp$biological_sample_id), tmp$biological_sample_id)
  tmp[j, ] 
}

Functions for preparing the data for meta analyses

  1. “Population statistics”
calculate_population_stats <- function(mydata, min_individuals = 5) {
  mydata %>% 
    group_by(population, strain_name, production_center, sex) %>% 
    summarise(
      trait = parameter_name[1],
      x_bar = mean(data_point),
      x_sd = sd(data_point),
      n_ind = n()
    ) %>% 
    ungroup() %>%
    filter(n_ind > min_individuals) %>% 
    # Check both sexes present & filter those missing
    group_by(population) %>% 
    mutate(
      n_sex = n_distinct(sex)
    ) %>% 
    ungroup() %>%
    filter(n_sex ==2) %>% 
    select(-n_sex) %>%
    arrange(production_center, strain_name, population, sex)
}
  1. Extraction of effect sizes and sample variances
create_meta_analysis_effect_sizes <- function(mydata) {
  i <- seq(1, nrow(mydata), by = 2)
  input <- data.frame(
    n1i = mydata$n_ind[i],
    n2i = mydata$n_ind[i + 1],
    x1i = mydata$x_bar[i],
    x2i = mydata$x_bar[i + 1],
    sd1i = mydata$x_sd[i],
    sd2i = mydata$x_sd[i + 1]
  )
  
  mydata[i,] %>% 
  select(strain_name, production_center, trait) %>%
    mutate(
      effect_size_CVR = Calc.lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_CVR = Calc.var.lnCVR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      effect_size_VR = Calc.lnVR(CSD = input$sd1i, CN = input$n1i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_VR = Calc.var.lnVR(CN = input$n1i, EN = input$n2i),
      effect_size_RR = Calc.lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      sample_variance_RR = Calc.var.lnRR(CMean = input$x1i, CSD = input$sd1i, CN = input$n1i, EMean = input$x2i, ESD = input$sd2i, EN = input$n2i),
      err = as.factor(seq_len(n()))
    )

}
  1. Meta Analysis

Function to calculate meta-analysis statistics. Created by A M Senior @ the University of Otago NZ 03/01/2014

Below are functions for calculating effect sizes for meta-analysis of variance. All functions take the mean, sd and n from the control and experimental groups.

The first function, Cal.lnCVR, calculates the the log response-ratio of the coefficient of variance (lnCVR) - see Nakagawa et al 2015.

The second function calculates the measurement error variance for lnCVR. As well as the aforementioned parameters, this function also takes Equal.E.C.Corr (default = T), which must be True or False. If true, the function assumes that the correlation between mean and sd (Taylor’s Law) is equal for the mean and control groups, and, thus these data are pooled. If False the mean-SD correlation for the experimental and control groups are calculated separately from one another.

Similar functions are then implemented for lnVR (for comparison of standard deviations) and ln RR (for comparison of means)

Calc.lnCVR <- function(CMean, CSD, CN, EMean, ESD, EN){
  log(ESD) - log(EMean) + 1 / (2*(EN - 1)) - (log(CSD) - log(CMean) + 1 / (2*(CN - 1)))
}

Calc.var.lnCVR <- function(CMean, CSD, CN, EMean, ESD, EN, Equal.E.C.Corr=T) {
  if(Equal.E.C.Corr==T){
    mvcorr <- 0 #cor.test(log(c(CMean, EMean)), log(c(CSD, ESD)))$estimate   old, slightly incorrect
    S2 <- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * mvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * mvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))
  }
  else{
    Cmvcorr <- cor.test(log(CMean), log(CSD))$estimate
    Emvcorr <- cor.test(log(EMean), (ESD))$estimate
    S2 <- CSD^2 / (CN * (CMean^2)) + 1 / (2 * (CN - 1)) - 2 * Cmvcorr * sqrt((CSD^2 / (CN * (CMean^2))) * (1 / (2 * (CN - 1)))) + ESD^2 / (EN * (EMean^2)) + 1 / (2 * (EN - 1)) - 2 * Emvcorr * sqrt((ESD^2 / (EN * (EMean^2))) * (1 / (2 * (EN - 1))))     
  }
  S2
}

Calc.lnVR <- function(CSD, CN, ESD, EN){
  log(ESD) - log(CSD) + 1 / (2*(EN - 1)) - 1 / (2*(CN - 1))
}

Calc.var.lnVR <- function( CN,  EN) {
  1 / (2*(EN - 1)) + 1 / (2*(CN - 1))
}

Calc.lnRR <- function(CMean, CSD, CN, EMean, ESD, EN) {
  log(EMean) - log(CMean)
}

Calc.var.lnRR <- function(CMean, CSD, CN, EMean, ESD, EN) {
  CSD^2/(CN * CMean^2) + ESD^2/(EN * EMean^2)
}

Having loaded the necessary functions, we can get started on the dataset.

We here provide the cleaned dataset, which we have saved in a folder called “export”, as easy starting point. However, the full dataset can be loaded and cleaned using the data cleaning function (Function 1 above), if “#” signs in the code below are removed (created as that is much smaller than the .csv - which we can still provide for those who absolutely want to start from scratch?)

## Load raw data - save cleaned dataset as RDS for reuse
#data_raw <- load_raw("data/dr7.0_all_control_data.csv") %>%
#    clean_raw_data()
#dir.create("export", F, F)
#saveRDS(data_raw, "export/data_clean.rds")
getwd()
## [1] "/Volumes/SZ WD drive/garvan/Github/IMPC sexDiffs/mice_sex_diff/scripts"
data1 <- readRDS("../export/data_clean.rds") 
#data1 

Clean data

This requires the selection of traits that have been measured in at least 2 centers. Consequently, rare or unusual methods and procedures are being filtered out in this step.

dat1 <-
  data1 %>%
  group_by(parameter_name) %>%
  summarize(center_per_trait = length(unique(production_center, na.rm = TRUE)))

dat2 <- merge(data1, dat1) 
dat_moreThan1center <-
  dat2  %>%
  filter(center_per_trait >= 2)

data2 <- dat_moreThan1center
#min(data2$center_per_trait)  # as a check if there indeed are no single occurences

Meta analysis, Phase 1

Preparation

Define population variable & add grouping variables

In this step, a grouping variable is added (found in “Parameter.Grouping.csv”) The grouping variables were decided based on functional groups and procedures

data3 <- data2 %>%
mutate(population = sprintf("%s-%s", production_center, strain_name))

 group <- read.csv("../export/ParameterGrouping.csv") 
 data <- data3
 data$parameterGroup <- group$parameter[match(data$parameter_name, group$parameter_name)] 

Assign each unique parameter_name (=trait,use trait variable) a unique number (‘id’)

We add a new variable, where redundant traits are combined [note however, at this stage the dataset still contains nonsensical traits, i.e. traits that may not contain any information on variance]

#head(data)

names(data)[16] <- "parameter_group"    

data <- transform(data, id = match(parameter_name, unique(parameter_name)))
n1 <- length(unique(data$parameter_name)) #232
n2 <- length(unique(data$parameter_group)) #161
n3 <- length(unique(data$procedure_name)) # 26

n <- length(unique(data$id))
#n  # just to check that the number of traits is 232

Create a matrix to store results for all traits

As the current version of this script utilizes a loop instead of tidyR code, it is here necessary to create an empty matrix, in which the returning values will be stored.

results.alltraits.grouping <- as.data.frame(cbind(c(1:n), matrix(rep(0, n*14), ncol = 14))) #number of individual results per trait = 10
names(results.alltraits.grouping) <- c("id", "lnCVR", "lnCVR_lower", "lnCVR_upper", "lnCVR_se", "lnVR", "lnVR_lower", "lnVR_upper", "lnVR_se", "lnRR", "lnRR_lower", "lnRR_upper" ,"lnRR_se" , "sampleSize", "trait")

LOOP, to run meta-analysis on all traits

The loop combines the functions mentioned above and fills the data matrix with results from our meta analysis. Error messages indicate traits that either did not reach convergence, or that did not return meaningful results in the meta-analysis, due to absence of variance. Those traits will be removed in later steps, outlined below.

for(t in 1:n) {
  
  tryCatch({
    
    data_par_age <- data_subset_parameterid_individual_by_age(data, t, age_min = 0, age_center = 100)
    
    population_stats <- calculate_population_stats(data_par_age)
    
    results <- create_meta_analysis_effect_sizes(population_stats)
    
#lnCVR,  log repsonse-ratio of the coefficient of variance    
    cvr <- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, random = list(~1| strain_name, ~1|production_center, ~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000),  verbose=F, data = results)
    
    results.alltraits.grouping[t, 2] <- cvr$b
    results.alltraits.grouping[t, 3] <- cvr$ci.lb
    results.alltraits.grouping[t, 4] <- cvr$ci.ub
    results.alltraits.grouping[t, 5] <- cvr$se
    
    cvr
    
    #lnVR, comparison of standard deviations   
    
cv <- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR, random = list(~1| strain_name, ~1|production_center,~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000),  verbose=F, data = results)
   
    results.alltraits.grouping[t, 6] <- cv$b
    results.alltraits.grouping[t, 7] <- cv$ci.lb
    results.alltraits.grouping[t, 8] <- cv$ci.ub
    results.alltraits.grouping[t, 9] <- cv$se
    
    # for means, lnRR

means <- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, random = list(~1| strain_name, ~1|production_center, ~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
    results.alltraits.grouping[t, 10] <- means$b
    results.alltraits.grouping[t, 11] <- means$ci.lb
    results.alltraits.grouping[t, 12] <- means$ci.ub
    results.alltraits.grouping[t, 13] <- means$se
     
     
        results.alltraits.grouping[t, 14] <- means$k
        results.alltraits.grouping[t, 15] <- unique(results$trait)
   
  }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
}
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y'
# Now that we have a "results" table with each of the meta-analytic means for all effect sizes of interest, we can use this table as part of the Shiny App, which will then be able to back calculate the percentage differences between males and females for mean, variance and coefficient of variance. We'll export and use this in the Shiny App. **Note that I have not dealt with convergence issues in some of these models, and so, this will need to be done down the road**

## Note Susi 31/7/2019: This dataset contains dublicated values, plus no info on what the "traits" mean. I will change Dan N's to one further belwo, that have been cleaned up already
#FILE TO USE: METACOMBO (around line 500)

#trait_meta_results <- write.csv(results.alltraits.grouping, file = "export/trait_meta_results.csv")

Merging datasets

Procedure names, grouping variables etc. are merged back together with the results from the metafor analysis above. This requires loading of another excel sheet, “procedures.csv”

procedures <- read.csv("../export/procedures.csv") 
 
results.alltraits.grouping$parameter_group <- data$parameter_group[match(results.alltraits.grouping$id, data$id)]
results.alltraits.grouping$procedure <- data$procedure_name[match(results.alltraits.grouping$id, data$id)]

results.alltraits.grouping$GroupingTerm <-  procedures$GroupingTerm[match(results.alltraits.grouping$procedure, procedures$procedure)]
results.alltraits.grouping$parameter_name <- data$parameter_name[match(results.alltraits.grouping$id, data$id)]

meta1 <- results.alltraits.grouping
n <- length(unique(meta1$parameter_name)) # 232

Removal of traits that did not achieve convergence, are nonsensical for analysis of variance (such as traits that show variation, such as number of ribs, digits, etc). 14 traits from the originally 232 that had been included are removed.

meta_clean <- meta1[ !(meta1$id %in% c(84,144,158,160,161,162,163,165,166,167,168,221,222,231)), ]
removed <-length(unique(meta_clean$parameter_name)) #218

Meta-analysis, Phase 2

Dealing with Correlated Parameters, preparation

This dataset contained a number of highly correlated traits, such as different kinds of cell counts (for example, hierarchical parametrization within immunological assays). As those data-points are not independent of each other, we conducted a meta analyses on these correlated parameters to collapse the number of levels.

Collapsing and merging correlated parameters

Here we double check numbers of trait parameters in the dataset

meta1 <- meta_clean 
# length(unique(meta1$procedure)) #18
# length(unique(meta1$GroupingTerm)) #9 
# length(unique(meta1$parameter_group)) # 148 levels. To be used as grouping factor for meta-meta analysis / collapsing down based on things that are classified identically in "parameter_group" but have different "parameter_name" 
length(unique(meta1$parameter_name)) #218
## [1] 218

Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size)

This serves to identify and separate the traits that are correlated from the full dataset that can be processed as is. If the sample size (n) for a given “parameter group” equals 1, the trait is unique and uncorrelated. All instances, where there are 2 or more traits associated with the same parameter group (90 cases), are selected for a “mini-meta analysis”, which removes the issue of correlation.

kable(cbind (meta1 %>%  count(parameter_group) )) %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "200px")
parameter_group n
12khz-evoked abr threshold 1
18khz-evoked abr threshold 1
24khz-evoked abr threshold 1
30khz-evoked abr threshold 1
6khz-evoked abr threshold 1
alanine aminotransferase 1
albumin 1
alkaline phosphatase 1
alpha-amylase 1
area under glucose response curve 1
aspartate aminotransferase 1
B cells 4
basophil cell count 1
basophil differential count 1
bmc/body weight 1
body length 1
body temp 1
body weight 1
body weight after experiment 1
body weight before experiment 1
bone area 1
bone mineral content (excluding skull) 1
bone mineral density (excluding skull) 1
calcium 1
cardiac output 1
cd4 nkt 6
cd4 t 7
cd8 nkt 6
cd8 t 7
cdcs 2
center average speed 1
center distance travelled 1
center permanence time 1
center resting time 1
chloride 1
click-evoked abr threshold 1
creatine kinase 1
creatinine 1
cv 1
distance travelled - total 1
dn nkt 6
dn t 7
ejection fraction 1
end-diastolic diameter 1
end-systolic diameter 1
eosinophils 3
fasted blood glucose concentration 1
fat mass 1
fat/body weight 1
follicular b cells 2
forelimb and hindlimb grip strength measurement mean 1
forelimb grip strength measurement mean 1
fractional shortening 1
free fatty acids 1
fructosamine 1
glucose 1
hdl-cholesterol 1
heart weight 1
heart weight normalised against body weight 1
hematocrit 1
hemoglobin 1
hr 1
hrv 1
initial response to glucose challenge 1
insulin 1
iron 1
lactate dehydrogenase 1
latency to center entry 1
ldl-cholesterol 1
lean mass 1
lean/body weight 1
left anterior chamber depth 1
left corneal thickness 1
left inner nuclear layer 1
left outer nuclear layer 1
left posterior chamber depth 1
left total retinal thickness 1
locomotor activity 1
luc 2
lvawd 1
lvaws 1
lvidd 1
lvids 1
lvpwd 1
lvpws 1
lymphocytes 2
magnesium 1
mean cell hemoglobin concentration 1
mean cell volume 1
mean corpuscular hemoglobin 1
mean platelet volume 1
mean r amplitude 1
mean sr amplitude 1
monocytes 3
neutrophils 3
nk cells 6
nkt cells 4
number of center entries 1
number of rears - total 1
others 1
pdcs 1
percentage center time 1
percentage of live gated events 2
periphery average speed 1
periphery distance travelled 1
periphery permanence time 1
periphery resting time 1
phosphorus 1
platelet count 1
pnn5(6>ms) 1
potassium 1
pq 1
pr 1
pre-pulse inhibition 5
qrs 1
qtc 1
qtc dispersion 1
red blood cell count 1
red blood cell distribution width 1
respiration rate 1
respiratory exchange ratio 1
response amplitude 10
right anterior chamber depth 1
right corneal thickness 1
right inner nuclear layer 1
right outer nuclear layer 1
right posterior chamber depth 1
right total retinal thickness 1
rmssd 1
rp macrophage (cd19- cd11c-) 1
rr 1
sodium 1
spleen weight 1
st 1
stroke volume 1
t cells 3
tibia length 1
total bilirubin 1
total cholesterol 1
total food intake 1
total protein 1
total water intake 1
triglycerides 1
urea (blood urea nitrogen - bun) 1
uric acid 1
white blood cell count 1
whole arena average speed 1
whole arena resting time 1
meta1b <-
  meta1 %>%
  group_by(parameter_group) %>% 
  summarize(par_group_size = length(unique(parameter_name, na.rm = TRUE)))
#this gives a summary of number of parameter names in each parameter group, now it neeeds to get merged it back together


meta1$par_group_size <- meta1b$par_group_size[match(meta1$parameter_group, meta1b$parameter_group)]

# Create subsets with > 1 count (par_group_size > 1) 

meta1_sub<-subset(meta1,par_group_size >1) # 90 observations   
meta1_sub$sampleSize <- as.numeric(meta1_sub$sampleSize)

Perform meta-analyses on correlated sub-traits, using robumeta

The subset of the data is prepared (nested), and in this first step the model of the meta analysis effect sizes are calculated

# nesting
n_count <- meta1_sub %>% 
  group_by(parameter_group) %>% 
  mutate(raw_N = sum(sampleSize)) %>%  
    nest()

model_count <- n_count %>% 
  mutate(model_lnRR = map(data, ~ robu(.x$lnRR ~ 1, data= .x, studynum= .x$id, modelweights = c("CORR"), rho = 0.8, 
                                                small = TRUE, var.eff.size= (.x$lnRR_se)^2 )),
  model_lnVR = map(data, ~ robu(.x$lnVR ~ 1, data= .x, studynum= .x$id, modelweights = c("CORR"), rho = 0.8, 
                                                small = TRUE, var.eff.size= (.x$lnVR_se)^2 )),
  model_lnCVR = map(data, ~ robu(.x$lnCVR ~ 1, data= .x, studynum= .x$id, modelweights = c("CORR"), rho = 0.8, 
                                                small = TRUE, var.eff.size= (.x$lnCVR_se)^2 ))) 

Extract and save parameter estimates

Function to collect the outcomes of the “mini” meta analysis

count_fun <- function(mod_sub)
  return(c(mod_sub$reg_table$b.r, mod_sub$reg_table$CI.L, mod_sub$reg_table$CI.U, mod_sub$reg_table$SE))   #estimate, lower ci, upper ci, SE

Extraction of values created during Meta analysis using robu meta

robusub_RR <- model_count %>% 
  transmute(parameter_group, estimatelnRR = map(model_lnRR, count_fun)) %>% 
  mutate(r = map(estimatelnRR, ~ data.frame(t(.)))) %>%
  unnest(r) %>%
  select(-estimatelnRR) %>%
  purrr::set_names(c("parameter_group","lnRR","lnRR_lower","lnRR_upper","lnRR_se"))

robusub_CVR <- model_count %>% 
  transmute(parameter_group, estimatelnCVR = map(model_lnCVR, count_fun)) %>% 
  mutate(r = map(estimatelnCVR, ~ data.frame(t(.)))) %>%
  unnest(r) %>%
  select(-estimatelnCVR) %>%
  purrr::set_names(c("parameter_group","lnCVR","lnCVR_lower","lnCVR_upper","lnCVR_se"))

robusub_VR <- model_count %>% 
  transmute(parameter_group, estimatelnVR = map(model_lnVR, count_fun)) %>% 
  mutate(r = map(estimatelnVR, ~ data.frame(t(.)))) %>%
  unnest(r) %>%
  select(-estimatelnVR) %>%
  purrr::set_names(c("parameter_group","lnVR","lnVR_lower","lnVR_upper","lnVR_se"))

robu_all <- full_join(robusub_CVR, robusub_VR) %>% full_join(., robusub_RR)
kable(cbind(robu_all, robu_all)) %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "200px")
parameter_group lnCVR lnCVR_lower lnCVR_upper lnCVR_se lnVR lnVR_lower lnVR_upper lnVR_se lnRR lnRR_lower lnRR_upper lnRR_se parameter_group lnCVR lnCVR_lower lnCVR_upper lnCVR_se lnVR lnVR_lower lnVR_upper lnVR_se lnRR lnRR_lower lnRR_upper lnRR_se
pre-pulse inhibition 0.0232963 -0.0802563 0.1268488 0.0370507 0.0091028 -0.0364640 0.0546695 0.0143431 -0.0052156 -0.0427126 0.0322815 0.0128092 pre-pulse inhibition 0.0232963 -0.0802563 0.1268488 0.0370507 0.0091028 -0.0364640 0.0546695 0.0143431 -0.0052156 -0.0427126 0.0322815 0.0128092
B cells -0.0938959 -0.2500020 0.0622103 0.0426972 -0.0995337 -0.2068001 0.0077328 0.0250132 -0.0026281 -0.1298230 0.1245668 0.0393018 B cells -0.0938959 -0.2500020 0.0622103 0.0426972 -0.0995337 -0.2068001 0.0077328 0.0250132 -0.0026281 -0.1298230 0.1245668 0.0393018
cd4 nkt -0.0287688 -0.0566987 -0.0008389 0.0101634 -0.2018746 -0.3102294 -0.0935198 0.0331161 -0.2344450 -0.4005266 -0.0683635 0.0633501 cd4 nkt -0.0287688 -0.0566987 -0.0008389 0.0101634 -0.2018746 -0.3102294 -0.0935198 0.0331161 -0.2344450 -0.4005266 -0.0683635 0.0633501
cd4 t -0.1507387 -0.2427976 -0.0586798 0.0360690 -0.1699213 -0.2629450 -0.0768975 0.0348324 -0.0031242 -0.0411564 0.0349081 0.0148989 cd4 t -0.1507387 -0.2427976 -0.0586798 0.0360690 -0.1699213 -0.2629450 -0.0768975 0.0348324 -0.0031242 -0.0411564 0.0349081 0.0148989
cd8 nkt -0.0424402 -0.0782046 -0.0066759 0.0119223 -0.0300442 -0.1823594 0.1222710 0.0533765 0.0035372 -0.0573749 0.0644494 0.0205272 cd8 nkt -0.0424402 -0.0782046 -0.0066759 0.0119223 -0.0300442 -0.1823594 0.1222710 0.0533765 0.0035372 -0.0573749 0.0644494 0.0205272
cd8 t -0.1223681 -0.2179976 -0.0267387 0.0358727 -0.1581698 -0.2342579 -0.0820816 0.0270229 -0.0415806 -0.0510391 -0.0321221 0.0023119 cd8 t -0.1223681 -0.2179976 -0.0267387 0.0358727 -0.1581698 -0.2342579 -0.0820816 0.0270229 -0.0415806 -0.0510391 -0.0321221 0.0023119
cdcs -0.0362947 -0.3588637 0.2862742 0.0253867 0.1080248 -0.0565718 0.2726213 0.0129540 0.1642541 -0.1701520 0.4986601 0.0263183 cdcs -0.0362947 -0.3588637 0.2862742 0.0253867 0.1080248 -0.0565718 0.2726213 0.0129540 0.1642541 -0.1701520 0.4986601 0.0263183
dn nkt -0.0619371 -0.1359380 0.0120637 0.0257746 -0.1572129 -0.2814342 -0.0329915 0.0447163 -0.1727105 -0.2906356 -0.0547854 0.0441034 dn nkt -0.0619371 -0.1359380 0.0120637 0.0257746 -0.1572129 -0.2814342 -0.0329915 0.0447163 -0.1727105 -0.2906356 -0.0547854 0.0441034
dn t -0.0796127 -0.1844481 0.0252227 0.0420063 -0.2421038 -0.3431678 -0.1410397 0.0406314 -0.2298147 -0.2519708 -0.2076586 0.0072373 dn t -0.0796127 -0.1844481 0.0252227 0.0420063 -0.2421038 -0.3431678 -0.1410397 0.0406314 -0.2298147 -0.2519708 -0.2076586 0.0072373
eosinophils -0.0662225 -0.2806631 0.1482181 0.0325859 -0.0154112 -0.4051652 0.3743427 0.0865366 -0.0042422 -0.2409206 0.2324362 0.0508093 eosinophils -0.0662225 -0.2806631 0.1482181 0.0325859 -0.0154112 -0.4051652 0.3743427 0.0865366 -0.0042422 -0.2409206 0.2324362 0.0508093
follicular b cells -0.1160077 -0.7256692 0.4936538 0.0479814 -0.1050194 -0.6946364 0.4845977 0.0464039 0.0052427 -0.1872381 0.1977236 0.0151486 follicular b cells -0.1160077 -0.7256692 0.4936538 0.0479814 -0.1050194 -0.6946364 0.4845977 0.0464039 0.0052427 -0.1872381 0.1977236 0.0151486
luc 0.0180436 -0.2038464 0.2399336 0.0174631 0.2657035 -1.2251358 1.7565428 0.1173316 0.2215497 -1.4136389 1.8567382 0.1286921 luc 0.0180436 -0.2038464 0.2399336 0.0174631 0.2657035 -1.2251358 1.7565428 0.1173316 0.2215497 -1.4136389 1.8567382 0.1286921
lymphocytes 0.0805230 -2.2618128 2.4228588 0.1843458 0.1550159 -1.0892706 1.3993024 0.0979275 0.0602144 -1.0131287 1.1335576 0.0844739 lymphocytes 0.0805230 -2.2618128 2.4228588 0.1843458 0.1550159 -1.0892706 1.3993024 0.0979275 0.0602144 -1.0131287 1.1335576 0.0844739
monocytes -0.0214677 -0.2033706 0.1604352 0.0420605 0.0784876 -0.1811005 0.3380757 0.0585593 0.1025193 -0.1483375 0.3533762 0.0571438 monocytes -0.0214677 -0.2033706 0.1604352 0.0420605 0.0784876 -0.1811005 0.3380757 0.0585593 0.1025193 -0.1483375 0.3533762 0.0571438
neutrophils 0.2587446 0.0130803 0.5044089 0.0557516 0.3799805 -0.2060446 0.9660057 0.1317980 0.1319372 -0.2669324 0.5308068 0.0924336 neutrophils 0.2587446 0.0130803 0.5044089 0.0557516 0.3799805 -0.2060446 0.9660057 0.1317980 0.1319372 -0.2669324 0.5308068 0.0924336
nk cells -0.0414772 -0.0960406 0.0130862 0.0200411 0.0156533 -0.0703789 0.1016856 0.0315487 0.0471757 -0.0162213 0.1105728 0.0231831 nk cells -0.0414772 -0.0960406 0.0130862 0.0200411 0.0156533 -0.0703789 0.1016856 0.0315487 0.0471757 -0.0162213 0.1105728 0.0231831
nkt cells 0.0033757 -0.1069890 0.1137404 0.0294661 -0.2458705 -0.4452333 -0.0465077 0.0426738 -0.1823355 -0.3233946 -0.0412763 0.0314580 nkt cells 0.0033757 -0.1069890 0.1137404 0.0294661 -0.2458705 -0.4452333 -0.0465077 0.0426738 -0.1823355 -0.3233946 -0.0412763 0.0314580
percentage of live gated events -0.0934933 -0.3037340 0.1167473 0.0165463 -0.0412606 -0.1414443 0.0589231 0.0078846 0.0500941 0.0081191 0.0920690 0.0033035 percentage of live gated events -0.0934933 -0.3037340 0.1167473 0.0165463 -0.0412606 -0.1414443 0.0589231 0.0078846 0.0500941 0.0081191 0.0920690 0.0033035
response amplitude 0.0333147 -0.0127585 0.0793879 0.0202947 0.2549274 0.1969787 0.3128761 0.0255003 0.2016062 0.1108136 0.2923987 0.0401164 response amplitude 0.0333147 -0.0127585 0.0793879 0.0202947 0.2549274 0.1969787 0.3128761 0.0255003 0.2016062 0.1108136 0.2923987 0.0401164
t cells -0.1338701 -0.2750284 0.0072883 0.0326594 -0.1240786 -0.4120104 0.1638531 0.0668611 -0.0005749 -0.1663201 0.1651702 0.0374233 t cells -0.1338701 -0.2750284 0.0072883 0.0326594 -0.1240786 -0.4120104 0.1638531 0.0668611 -0.0005749 -0.1663201 0.1651702 0.0374233

Merge the two data sets (the new [robu_all] and the initial [uncorrelated sub-traits with count = 1])

meta_all <- meta1 %>% filter(par_group_size == 1) %>% as_tibble
#str(meta_all)
#str(robu_all)
#which(is.na(match(names(meta_all),names(robu_all))))  # check

Combine data

# Step1 
combinedmeta <- bind_rows(robu_all, meta_all)
#glimpse(combinedmeta)

# Steps 2&3
metacombo <- combinedmeta
metacombo$counts <- meta1$par_group_size[match( metacombo$parameter_group, meta1$parameter_group)]
metacombo$procedure2 <-meta1$procedure[match( metacombo$parameter_group, meta1$parameter_group)]
metacombo$GroupingTerm2 <-meta1$GroupingTerm[match( metacombo$parameter_group, meta1$parameter_group)]

kable(cbind (metacombo, metacombo)) %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "200px")
parameter_group lnCVR lnCVR_lower lnCVR_upper lnCVR_se lnVR lnVR_lower lnVR_upper lnVR_se lnRR lnRR_lower lnRR_upper lnRR_se id sampleSize trait procedure GroupingTerm parameter_name par_group_size counts procedure2 GroupingTerm2 parameter_group lnCVR lnCVR_lower lnCVR_upper lnCVR_se lnVR lnVR_lower lnVR_upper lnVR_se lnRR lnRR_lower lnRR_upper lnRR_se id sampleSize trait procedure GroupingTerm parameter_name par_group_size counts procedure2 GroupingTerm2
pre-pulse inhibition 0.0232963 -0.0802563 0.1268488 0.0370507 0.0091028 -0.0364640 0.0546695 0.0143431 -0.0052156 -0.0427126 0.0322815 0.0128092 NA NA NA NA NA NA NA 5 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour pre-pulse inhibition 0.0232963 -0.0802563 0.1268488 0.0370507 0.0091028 -0.0364640 0.0546695 0.0143431 -0.0052156 -0.0427126 0.0322815 0.0128092 NA NA NA NA NA NA NA 5 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour
B cells -0.0938959 -0.2500020 0.0622103 0.0426972 -0.0995337 -0.2068001 0.0077328 0.0250132 -0.0026281 -0.1298230 0.1245668 0.0393018 NA NA NA NA NA NA NA 4 Immunophenotyping Immunology B cells -0.0938959 -0.2500020 0.0622103 0.0426972 -0.0995337 -0.2068001 0.0077328 0.0250132 -0.0026281 -0.1298230 0.1245668 0.0393018 NA NA NA NA NA NA NA 4 Immunophenotyping Immunology
cd4 nkt -0.0287688 -0.0566987 -0.0008389 0.0101634 -0.2018746 -0.3102294 -0.0935198 0.0331161 -0.2344450 -0.4005266 -0.0683635 0.0633501 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology cd4 nkt -0.0287688 -0.0566987 -0.0008389 0.0101634 -0.2018746 -0.3102294 -0.0935198 0.0331161 -0.2344450 -0.4005266 -0.0683635 0.0633501 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology
cd4 t -0.1507387 -0.2427976 -0.0586798 0.0360690 -0.1699213 -0.2629450 -0.0768975 0.0348324 -0.0031242 -0.0411564 0.0349081 0.0148989 NA NA NA NA NA NA NA 7 Immunophenotyping Immunology cd4 t -0.1507387 -0.2427976 -0.0586798 0.0360690 -0.1699213 -0.2629450 -0.0768975 0.0348324 -0.0031242 -0.0411564 0.0349081 0.0148989 NA NA NA NA NA NA NA 7 Immunophenotyping Immunology
cd8 nkt -0.0424402 -0.0782046 -0.0066759 0.0119223 -0.0300442 -0.1823594 0.1222710 0.0533765 0.0035372 -0.0573749 0.0644494 0.0205272 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology cd8 nkt -0.0424402 -0.0782046 -0.0066759 0.0119223 -0.0300442 -0.1823594 0.1222710 0.0533765 0.0035372 -0.0573749 0.0644494 0.0205272 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology
cd8 t -0.1223681 -0.2179976 -0.0267387 0.0358727 -0.1581698 -0.2342579 -0.0820816 0.0270229 -0.0415806 -0.0510391 -0.0321221 0.0023119 NA NA NA NA NA NA NA 7 Immunophenotyping Immunology cd8 t -0.1223681 -0.2179976 -0.0267387 0.0358727 -0.1581698 -0.2342579 -0.0820816 0.0270229 -0.0415806 -0.0510391 -0.0321221 0.0023119 NA NA NA NA NA NA NA 7 Immunophenotyping Immunology
cdcs -0.0362947 -0.3588637 0.2862742 0.0253867 0.1080248 -0.0565718 0.2726213 0.0129540 0.1642541 -0.1701520 0.4986601 0.0263183 NA NA NA NA NA NA NA 2 Immunophenotyping Immunology cdcs -0.0362947 -0.3588637 0.2862742 0.0253867 0.1080248 -0.0565718 0.2726213 0.0129540 0.1642541 -0.1701520 0.4986601 0.0263183 NA NA NA NA NA NA NA 2 Immunophenotyping Immunology
dn nkt -0.0619371 -0.1359380 0.0120637 0.0257746 -0.1572129 -0.2814342 -0.0329915 0.0447163 -0.1727105 -0.2906356 -0.0547854 0.0441034 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology dn nkt -0.0619371 -0.1359380 0.0120637 0.0257746 -0.1572129 -0.2814342 -0.0329915 0.0447163 -0.1727105 -0.2906356 -0.0547854 0.0441034 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology
dn t -0.0796127 -0.1844481 0.0252227 0.0420063 -0.2421038 -0.3431678 -0.1410397 0.0406314 -0.2298147 -0.2519708 -0.2076586 0.0072373 NA NA NA NA NA NA NA 7 Immunophenotyping Immunology dn t -0.0796127 -0.1844481 0.0252227 0.0420063 -0.2421038 -0.3431678 -0.1410397 0.0406314 -0.2298147 -0.2519708 -0.2076586 0.0072373 NA NA NA NA NA NA NA 7 Immunophenotyping Immunology
eosinophils -0.0662225 -0.2806631 0.1482181 0.0325859 -0.0154112 -0.4051652 0.3743427 0.0865366 -0.0042422 -0.2409206 0.2324362 0.0508093 NA NA NA NA NA NA NA 3 Hematology Hematology eosinophils -0.0662225 -0.2806631 0.1482181 0.0325859 -0.0154112 -0.4051652 0.3743427 0.0865366 -0.0042422 -0.2409206 0.2324362 0.0508093 NA NA NA NA NA NA NA 3 Hematology Hematology
follicular b cells -0.1160077 -0.7256692 0.4936538 0.0479814 -0.1050194 -0.6946364 0.4845977 0.0464039 0.0052427 -0.1872381 0.1977236 0.0151486 NA NA NA NA NA NA NA 2 Immunophenotyping Immunology follicular b cells -0.1160077 -0.7256692 0.4936538 0.0479814 -0.1050194 -0.6946364 0.4845977 0.0464039 0.0052427 -0.1872381 0.1977236 0.0151486 NA NA NA NA NA NA NA 2 Immunophenotyping Immunology
luc 0.0180436 -0.2038464 0.2399336 0.0174631 0.2657035 -1.2251358 1.7565428 0.1173316 0.2215497 -1.4136389 1.8567382 0.1286921 NA NA NA NA NA NA NA 2 Hematology Hematology luc 0.0180436 -0.2038464 0.2399336 0.0174631 0.2657035 -1.2251358 1.7565428 0.1173316 0.2215497 -1.4136389 1.8567382 0.1286921 NA NA NA NA NA NA NA 2 Hematology Hematology
lymphocytes 0.0805230 -2.2618128 2.4228588 0.1843458 0.1550159 -1.0892706 1.3993024 0.0979275 0.0602144 -1.0131287 1.1335576 0.0844739 NA NA NA NA NA NA NA 2 Hematology Hematology lymphocytes 0.0805230 -2.2618128 2.4228588 0.1843458 0.1550159 -1.0892706 1.3993024 0.0979275 0.0602144 -1.0131287 1.1335576 0.0844739 NA NA NA NA NA NA NA 2 Hematology Hematology
monocytes -0.0214677 -0.2033706 0.1604352 0.0420605 0.0784876 -0.1811005 0.3380757 0.0585593 0.1025193 -0.1483375 0.3533762 0.0571438 NA NA NA NA NA NA NA 3 Hematology Hematology monocytes -0.0214677 -0.2033706 0.1604352 0.0420605 0.0784876 -0.1811005 0.3380757 0.0585593 0.1025193 -0.1483375 0.3533762 0.0571438 NA NA NA NA NA NA NA 3 Hematology Hematology
neutrophils 0.2587446 0.0130803 0.5044089 0.0557516 0.3799805 -0.2060446 0.9660057 0.1317980 0.1319372 -0.2669324 0.5308068 0.0924336 NA NA NA NA NA NA NA 3 Hematology Hematology neutrophils 0.2587446 0.0130803 0.5044089 0.0557516 0.3799805 -0.2060446 0.9660057 0.1317980 0.1319372 -0.2669324 0.5308068 0.0924336 NA NA NA NA NA NA NA 3 Hematology Hematology
nk cells -0.0414772 -0.0960406 0.0130862 0.0200411 0.0156533 -0.0703789 0.1016856 0.0315487 0.0471757 -0.0162213 0.1105728 0.0231831 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology nk cells -0.0414772 -0.0960406 0.0130862 0.0200411 0.0156533 -0.0703789 0.1016856 0.0315487 0.0471757 -0.0162213 0.1105728 0.0231831 NA NA NA NA NA NA NA 6 Immunophenotyping Immunology
nkt cells 0.0033757 -0.1069890 0.1137404 0.0294661 -0.2458705 -0.4452333 -0.0465077 0.0426738 -0.1823355 -0.3233946 -0.0412763 0.0314580 NA NA NA NA NA NA NA 4 Immunophenotyping Immunology nkt cells 0.0033757 -0.1069890 0.1137404 0.0294661 -0.2458705 -0.4452333 -0.0465077 0.0426738 -0.1823355 -0.3233946 -0.0412763 0.0314580 NA NA NA NA NA NA NA 4 Immunophenotyping Immunology
percentage of live gated events -0.0934933 -0.3037340 0.1167473 0.0165463 -0.0412606 -0.1414443 0.0589231 0.0078846 0.0500941 0.0081191 0.0920690 0.0033035 NA NA NA NA NA NA NA 2 Immunophenotyping Immunology percentage of live gated events -0.0934933 -0.3037340 0.1167473 0.0165463 -0.0412606 -0.1414443 0.0589231 0.0078846 0.0500941 0.0081191 0.0920690 0.0033035 NA NA NA NA NA NA NA 2 Immunophenotyping Immunology
response amplitude 0.0333147 -0.0127585 0.0793879 0.0202947 0.2549274 0.1969787 0.3128761 0.0255003 0.2016062 0.1108136 0.2923987 0.0401164 NA NA NA NA NA NA NA 10 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour response amplitude 0.0333147 -0.0127585 0.0793879 0.0202947 0.2549274 0.1969787 0.3128761 0.0255003 0.2016062 0.1108136 0.2923987 0.0401164 NA NA NA NA NA NA NA 10 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour
t cells -0.1338701 -0.2750284 0.0072883 0.0326594 -0.1240786 -0.4120104 0.1638531 0.0668611 -0.0005749 -0.1663201 0.1651702 0.0374233 NA NA NA NA NA NA NA 3 Immunophenotyping Immunology t cells -0.1338701 -0.2750284 0.0072883 0.0326594 -0.1240786 -0.4120104 0.1638531 0.0668611 -0.0005749 -0.1663201 0.1651702 0.0374233 NA NA NA NA NA NA NA 3 Immunophenotyping Immunology
12khz-evoked abr threshold 0.0538655 -0.0056830 0.1134139 0.0303824 0.0869649 0.0065802 0.1673497 0.0410134 0.0024851 -0.0214504 0.0264205 0.0122122 6 14 12khz-evoked abr threshold Auditory Brain Stem Response Hearing 12khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing 12khz-evoked abr threshold 0.0538655 -0.0056830 0.1134139 0.0303824 0.0869649 0.0065802 0.1673497 0.0410134 0.0024851 -0.0214504 0.0264205 0.0122122 6 14 12khz-evoked abr threshold Auditory Brain Stem Response Hearing 12khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing
18khz-evoked abr threshold 0.0238241 -0.0331809 0.0808292 0.0290848 0.0250266 -0.0488450 0.0988982 0.0376903 -0.0200763 -0.0431508 0.0029982 0.0117729 7 14 18khz-evoked abr threshold Auditory Brain Stem Response Hearing 18khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing 18khz-evoked abr threshold 0.0238241 -0.0331809 0.0808292 0.0290848 0.0250266 -0.0488450 0.0988982 0.0376903 -0.0200763 -0.0431508 0.0029982 0.0117729 7 14 18khz-evoked abr threshold Auditory Brain Stem Response Hearing 18khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing
24khz-evoked abr threshold 0.0518127 -0.0148242 0.1184497 0.0339991 -0.0891510 -0.3321998 0.1538977 0.1240067 -0.0224536 -0.0444163 -0.0004910 0.0112057 8 14 24khz-evoked abr threshold Auditory Brain Stem Response Hearing 24khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing 24khz-evoked abr threshold 0.0518127 -0.0148242 0.1184497 0.0339991 -0.0891510 -0.3321998 0.1538977 0.1240067 -0.0224536 -0.0444163 -0.0004910 0.0112057 8 14 24khz-evoked abr threshold Auditory Brain Stem Response Hearing 24khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing
30khz-evoked abr threshold 0.0170933 -0.0533187 0.0875053 0.0359252 -0.0344797 -0.1017901 0.0328306 0.0343426 -0.0497874 -0.0748197 -0.0247550 0.0127718 9 14 30khz-evoked abr threshold Auditory Brain Stem Response Hearing 30khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing 30khz-evoked abr threshold 0.0170933 -0.0533187 0.0875053 0.0359252 -0.0344797 -0.1017901 0.0328306 0.0343426 -0.0497874 -0.0748197 -0.0247550 0.0127718 9 14 30khz-evoked abr threshold Auditory Brain Stem Response Hearing 30khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing
6khz-evoked abr threshold -0.0077678 -0.0418582 0.0263226 0.0173934 0.0141682 -0.0189973 0.0473337 0.0169215 0.0184043 0.0056897 0.0311189 0.0064872 10 14 6khz-evoked abr threshold Auditory Brain Stem Response Hearing 6khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing 6khz-evoked abr threshold -0.0077678 -0.0418582 0.0263226 0.0173934 0.0141682 -0.0189973 0.0473337 0.0169215 0.0184043 0.0056897 0.0311189 0.0064872 10 14 6khz-evoked abr threshold Auditory Brain Stem Response Hearing 6khz-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing
alanine aminotransferase -0.0684217 -0.1895020 0.0526586 0.0617768 0.0585179 -0.1322507 0.2492866 0.0973327 0.1069442 0.0319934 0.1818950 0.0382409 11 16 alanine aminotransferase Clinical Chemistry Physiology alanine aminotransferase 1 1 Clinical Chemistry Physiology alanine aminotransferase -0.0684217 -0.1895020 0.0526586 0.0617768 0.0585179 -0.1322507 0.2492866 0.0973327 0.1069442 0.0319934 0.1818950 0.0382409 11 16 alanine aminotransferase Clinical Chemistry Physiology alanine aminotransferase 1 1 Clinical Chemistry Physiology
albumin 0.1133080 0.0451475 0.1814685 0.0347764 0.0559995 -0.0080678 0.1200668 0.0326880 -0.0567840 -0.0732083 -0.0403597 0.0083799 12 16 albumin Clinical Chemistry Physiology albumin 1 1 Clinical Chemistry Physiology albumin 0.1133080 0.0451475 0.1814685 0.0347764 0.0559995 -0.0080678 0.1200668 0.0326880 -0.0567840 -0.0732083 -0.0403597 0.0083799 12 16 albumin Clinical Chemistry Physiology albumin 1 1 Clinical Chemistry Physiology
alkaline phosphatase 0.1043649 0.0451585 0.1635713 0.0302079 -0.3112471 -0.3980164 -0.2244778 0.0442709 -0.4216032 -0.4694832 -0.3737231 0.0244290 13 16 alkaline phosphatase Clinical Chemistry Physiology alkaline phosphatase 1 1 Clinical Chemistry Physiology alkaline phosphatase 0.1043649 0.0451585 0.1635713 0.0302079 -0.3112471 -0.3980164 -0.2244778 0.0442709 -0.4216032 -0.4694832 -0.3737231 0.0244290 13 16 alkaline phosphatase Clinical Chemistry Physiology alkaline phosphatase 1 1 Clinical Chemistry Physiology
alpha-amylase 0.0383407 -0.0423419 0.1190232 0.0411653 0.2795566 0.1615777 0.3975355 0.0601944 0.2246987 0.1793151 0.2700822 0.0231553 14 9 alpha-amylase Clinical Chemistry Physiology alpha-amylase 1 1 Clinical Chemistry Physiology alpha-amylase 0.0383407 -0.0423419 0.1190232 0.0411653 0.2795566 0.1615777 0.3975355 0.0601944 0.2246987 0.1793151 0.2700822 0.0231553 14 9 alpha-amylase Clinical Chemistry Physiology alpha-amylase 1 1 Clinical Chemistry Physiology
area under glucose response curve -0.1531723 -0.2210551 -0.0852895 0.0346347 0.2748396 0.1950895 0.3545898 0.0406896 0.4357738 0.3655882 0.5059595 0.0358097 15 16 area under glucose response curve Intraperitoneal glucose tolerance test (IPGTT) Metabolism area under glucose response curve 1 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism area under glucose response curve -0.1531723 -0.2210551 -0.0852895 0.0346347 0.2748396 0.1950895 0.3545898 0.0406896 0.4357738 0.3655882 0.5059595 0.0358097 15 16 area under glucose response curve Intraperitoneal glucose tolerance test (IPGTT) Metabolism area under glucose response curve 1 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism
aspartate aminotransferase 0.0119165 -0.1228287 0.1466617 0.0687488 -0.0566968 -0.2457779 0.1323843 0.0964717 -0.0585577 -0.1331777 0.0160624 0.0380722 16 16 aspartate aminotransferase Clinical Chemistry Physiology aspartate aminotransferase 1 1 Clinical Chemistry Physiology aspartate aminotransferase 0.0119165 -0.1228287 0.1466617 0.0687488 -0.0566968 -0.2457779 0.1323843 0.0964717 -0.0585577 -0.1331777 0.0160624 0.0380722 16 16 aspartate aminotransferase Clinical Chemistry Physiology aspartate aminotransferase 1 1 Clinical Chemistry Physiology
basophil cell count -0.0917931 -0.2022487 0.0186624 0.0563559 0.2031265 -0.0131549 0.4194079 0.1103497 0.2675772 0.0643028 0.4708516 0.1037133 20 8 basophil cell count Hematology Hematology basophil cell count 1 1 Hematology Hematology basophil cell count -0.0917931 -0.2022487 0.0186624 0.0563559 0.2031265 -0.0131549 0.4194079 0.1103497 0.2675772 0.0643028 0.4708516 0.1037133 20 8 basophil cell count Hematology Hematology basophil cell count 1 1 Hematology Hematology
basophil differential count -0.0934739 -0.1787512 -0.0081966 0.0435096 -0.0639511 -0.2828066 0.1549044 0.1116630 -0.0156339 -0.1102310 0.0789633 0.0482647 21 8 basophil differential count Hematology Hematology basophil differential count 1 1 Hematology Hematology basophil differential count -0.0934739 -0.1787512 -0.0081966 0.0435096 -0.0639511 -0.2828066 0.1549044 0.1116630 -0.0156339 -0.1102310 0.0789633 0.0482647 21 8 basophil differential count Hematology Hematology basophil differential count 1 1 Hematology Hematology
bmc/body weight 0.1314998 0.0329846 0.2300151 0.0502638 -0.0448684 -0.1340146 0.0442777 0.0454836 -0.1722378 -0.2207030 -0.1237726 0.0247276 22 17 bmc/body weight Body Composition (DEXA lean/fat) Morphology bmc/body weight 1 1 Body Composition (DEXA lean/fat) Morphology bmc/body weight 0.1314998 0.0329846 0.2300151 0.0502638 -0.0448684 -0.1340146 0.0442777 0.0454836 -0.1722378 -0.2207030 -0.1237726 0.0247276 22 17 bmc/body weight Body Composition (DEXA lean/fat) Morphology bmc/body weight 1 1 Body Composition (DEXA lean/fat) Morphology
body length -0.0347988 -0.0824528 0.0128552 0.0243137 -0.0059677 -0.0526221 0.0406866 0.0238037 0.0282722 0.0233254 0.0332189 0.0025239 23 16 body length Body Composition (DEXA lean/fat) Morphology body length 1 1 Body Composition (DEXA lean/fat) Morphology body length -0.0347988 -0.0824528 0.0128552 0.0243137 -0.0059677 -0.0526221 0.0406866 0.0238037 0.0282722 0.0233254 0.0332189 0.0025239 23 16 body length Body Composition (DEXA lean/fat) Morphology body length 1 1 Body Composition (DEXA lean/fat) Morphology
body temp -0.0325368 -0.1066429 0.0415693 0.0378099 -0.0303742 -0.1044537 0.0437054 0.0377964 0.0018532 -0.0005002 0.0042066 0.0012008 24 3 body temp Echo Heart body temp 1 1 Echo Heart body temp -0.0325368 -0.1066429 0.0415693 0.0378099 -0.0303742 -0.1044537 0.0437054 0.0377964 0.0018532 -0.0005002 0.0042066 0.0012008 24 3 body temp Echo Heart body temp 1 1 Echo Heart
body weight 0.0245675 -0.0420402 0.0911752 0.0339841 0.2335793 0.1694979 0.2976607 0.0326952 0.2096770 0.1938727 0.2254813 0.0080636 25 18 body weight Body Weight Morphology body weight 1 1 Body Weight Morphology body weight 0.0245675 -0.0420402 0.0911752 0.0339841 0.2335793 0.1694979 0.2976607 0.0326952 0.2096770 0.1938727 0.2254813 0.0080636 25 18 body weight Body Weight Morphology body weight 1 1 Body Weight Morphology
body weight after experiment 0.0853708 0.0299665 0.1407751 0.0282680 0.2849370 0.2328875 0.3369866 0.0265564 0.2030973 0.1864076 0.2197871 0.0085153 26 9 body weight after experiment Indirect Calorimetry Metabolism body weight after experiment 1 1 Indirect Calorimetry Metabolism body weight after experiment 0.0853708 0.0299665 0.1407751 0.0282680 0.2849370 0.2328875 0.3369866 0.0265564 0.2030973 0.1864076 0.2197871 0.0085153 26 9 body weight after experiment Indirect Calorimetry Metabolism body weight after experiment 1 1 Indirect Calorimetry Metabolism
body weight before experiment 0.1053511 0.0412461 0.1694562 0.0327073 0.3038998 0.2435428 0.3642568 0.0307949 0.2008638 0.1816362 0.2200914 0.0098102 27 9 body weight before experiment Indirect Calorimetry Metabolism body weight before experiment 1 1 Indirect Calorimetry Metabolism body weight before experiment 0.1053511 0.0412461 0.1694562 0.0327073 0.3038998 0.2435428 0.3642568 0.0307949 0.2008638 0.1816362 0.2200914 0.0098102 27 9 body weight before experiment Indirect Calorimetry Metabolism body weight before experiment 1 1 Indirect Calorimetry Metabolism
bone area 0.0981587 0.0272824 0.1690349 0.0361620 0.1286546 0.0533659 0.2039432 0.0384133 0.0315241 0.0003806 0.0626676 0.0158898 28 17 bone area Body Composition (DEXA lean/fat) Morphology bone area 1 1 Body Composition (DEXA lean/fat) Morphology bone area 0.0981587 0.0272824 0.1690349 0.0361620 0.1286546 0.0533659 0.2039432 0.0384133 0.0315241 0.0003806 0.0626676 0.0158898 28 17 bone area Body Composition (DEXA lean/fat) Morphology bone area 1 1 Body Composition (DEXA lean/fat) Morphology
bone mineral content (excluding skull) 0.1709230 0.0625642 0.2792818 0.0552861 0.2091372 0.1015600 0.3167143 0.0548873 0.0372537 -0.0130828 0.0875902 0.0256824 29 17 bone mineral content (excluding skull) Body Composition (DEXA lean/fat) Morphology bone mineral content (excluding skull) 1 1 Body Composition (DEXA lean/fat) Morphology bone mineral content (excluding skull) 0.1709230 0.0625642 0.2792818 0.0552861 0.2091372 0.1015600 0.3167143 0.0548873 0.0372537 -0.0130828 0.0875902 0.0256824 29 17 bone mineral content (excluding skull) Body Composition (DEXA lean/fat) Morphology bone mineral content (excluding skull) 1 1 Body Composition (DEXA lean/fat) Morphology
bone mineral density (excluding skull) 0.0542638 -0.0881612 0.1966887 0.0726671 0.0492830 -0.1087868 0.2073528 0.0806494 0.0012286 -0.0187942 0.0212514 0.0102159 30 17 bone mineral density (excluding skull) Body Composition (DEXA lean/fat) Morphology bone mineral density (excluding skull) 1 1 Body Composition (DEXA lean/fat) Morphology bone mineral density (excluding skull) 0.0542638 -0.0881612 0.1966887 0.0726671 0.0492830 -0.1087868 0.2073528 0.0806494 0.0012286 -0.0187942 0.0212514 0.0102159 30 17 bone mineral density (excluding skull) Body Composition (DEXA lean/fat) Morphology bone mineral density (excluding skull) 1 1 Body Composition (DEXA lean/fat) Morphology
calcium 0.0097946 -0.0464600 0.0660492 0.0287018 0.0135683 -0.0424600 0.0695966 0.0285864 0.0036564 -0.0000609 0.0073737 0.0018966 31 16 calcium Clinical Chemistry Physiology calcium 1 1 Clinical Chemistry Physiology calcium 0.0097946 -0.0464600 0.0660492 0.0287018 0.0135683 -0.0424600 0.0695966 0.0285864 0.0036564 -0.0000609 0.0073737 0.0018966 31 16 calcium Clinical Chemistry Physiology calcium 1 1 Clinical Chemistry Physiology
cardiac output 0.0133816 -0.0797535 0.1065166 0.0475188 0.1017991 0.0206287 0.1829694 0.0414142 0.0934439 0.0580233 0.1288645 0.0180721 32 5 cardiac output Echo Heart cardiac output 1 1 Echo Heart cardiac output 0.0133816 -0.0797535 0.1065166 0.0475188 0.1017991 0.0206287 0.1829694 0.0414142 0.0934439 0.0580233 0.1288645 0.0180721 32 5 cardiac output Echo Heart cardiac output 1 1 Echo Heart
center average speed 0.0167300 -0.0404735 0.0739335 0.0291860 -0.0588515 -0.1004209 -0.0172820 0.0212093 -0.0724619 -0.1149622 -0.0299616 0.0216842 61 12 center average speed Open Field Behaviour center average speed 1 1 Open Field Behaviour center average speed 0.0167300 -0.0404735 0.0739335 0.0291860 -0.0588515 -0.1004209 -0.0172820 0.0212093 -0.0724619 -0.1149622 -0.0299616 0.0216842 61 12 center average speed Open Field Behaviour center average speed 1 1 Open Field Behaviour
center distance travelled -0.0162603 -0.0733243 0.0408038 0.0291149 -0.1060637 -0.2023343 -0.0097930 0.0491186 -0.0940204 -0.1945774 0.0065366 0.0513055 62 12 center distance travelled Open Field Behaviour center distance travelled 1 1 Open Field Behaviour center distance travelled -0.0162603 -0.0733243 0.0408038 0.0291149 -0.1060637 -0.2023343 -0.0097930 0.0491186 -0.0940204 -0.1945774 0.0065366 0.0513055 62 12 center distance travelled Open Field Behaviour center distance travelled 1 1 Open Field Behaviour
center permanence time -0.0253715 -0.0826435 0.0319004 0.0292209 -0.0255734 -0.1014389 0.0502922 0.0387076 -0.0035151 -0.0902886 0.0832585 0.0442730 63 13 center permanence time Open Field Behaviour center permanence time 1 1 Open Field Behaviour center permanence time -0.0253715 -0.0826435 0.0319004 0.0292209 -0.0255734 -0.1014389 0.0502922 0.0387076 -0.0035151 -0.0902886 0.0832585 0.0442730 63 13 center permanence time Open Field Behaviour center permanence time 1 1 Open Field Behaviour
center resting time 0.0244492 -0.0737922 0.1226906 0.0501241 -0.0228690 -0.1548339 0.1090960 0.0673303 -0.0630751 -0.2215457 0.0953955 0.0808538 64 10 center resting time Open Field Behaviour center resting time 1 1 Open Field Behaviour center resting time 0.0244492 -0.0737922 0.1226906 0.0501241 -0.0228690 -0.1548339 0.1090960 0.0673303 -0.0630751 -0.2215457 0.0953955 0.0808538 64 10 center resting time Open Field Behaviour center resting time 1 1 Open Field Behaviour
chloride 0.0321555 -0.1270972 0.1914083 0.0812529 0.0241491 -0.1438502 0.1921485 0.0857155 -0.0127047 -0.0177349 -0.0076745 0.0025665 65 10 chloride Clinical Chemistry Physiology chloride 1 1 Clinical Chemistry Physiology chloride 0.0321555 -0.1270972 0.1914083 0.0812529 0.0241491 -0.1438502 0.1921485 0.0857155 -0.0127047 -0.0177349 -0.0076745 0.0025665 65 10 chloride Clinical Chemistry Physiology chloride 1 1 Clinical Chemistry Physiology
click-evoked abr threshold -0.0529450 -0.1534816 0.0475915 0.0512951 -0.0561198 -0.1827679 0.0705282 0.0646176 -0.0154221 -0.0577200 0.0268757 0.0215809 66 11 click-evoked abr threshold Auditory Brain Stem Response Hearing click-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing click-evoked abr threshold -0.0529450 -0.1534816 0.0475915 0.0512951 -0.0561198 -0.1827679 0.0705282 0.0646176 -0.0154221 -0.0577200 0.0268757 0.0215809 66 11 click-evoked abr threshold Auditory Brain Stem Response Hearing click-evoked abr threshold 1 1 Auditory Brain Stem Response Hearing
creatine kinase 0.0241232 -0.1071457 0.1553920 0.0669751 -0.1318792 -0.3968974 0.1331390 0.1352159 -0.1344413 -0.3838303 0.1149476 0.1272416 67 9 creatine kinase Clinical Chemistry Physiology creatine kinase 1 1 Clinical Chemistry Physiology creatine kinase 0.0241232 -0.1071457 0.1553920 0.0669751 -0.1318792 -0.3968974 0.1331390 0.1352159 -0.1344413 -0.3838303 0.1149476 0.1272416 67 9 creatine kinase Clinical Chemistry Physiology creatine kinase 1 1 Clinical Chemistry Physiology
creatinine 0.0352315 -0.0229205 0.0933835 0.0296699 0.1066373 -0.2200831 0.4333578 0.1666972 -0.0844078 -0.1320251 -0.0367905 0.0242950 68 16 creatinine Clinical Chemistry Physiology creatinine 1 1 Clinical Chemistry Physiology creatinine 0.0352315 -0.0229205 0.0933835 0.0296699 0.1066373 -0.2200831 0.4333578 0.1666972 -0.0844078 -0.1320251 -0.0367905 0.0242950 68 16 creatinine Clinical Chemistry Physiology creatinine 1 1 Clinical Chemistry Physiology
cv 0.1874544 0.0716631 0.3032457 0.0590783 -0.0895722 -0.2484833 0.0693388 0.0810786 -0.2401301 -0.3410322 -0.1392280 0.0514816 69 9 cv Electrocardiogram (ECG) Heart cv 1 1 Electrocardiogram (ECG) Heart cv 0.1874544 0.0716631 0.3032457 0.0590783 -0.0895722 -0.2484833 0.0693388 0.0810786 -0.2401301 -0.3410322 -0.1392280 0.0514816 69 9 cv Electrocardiogram (ECG) Heart cv 1 1 Electrocardiogram (ECG) Heart
distance travelled - total -0.0187819 -0.0858957 0.0483318 0.0342423 -0.1272582 -0.1997426 -0.0547738 0.0369825 -0.1121373 -0.1816322 -0.0426424 0.0354572 70 13 distance travelled - total Open Field Behaviour distance travelled - total 1 1 Open Field Behaviour distance travelled - total -0.0187819 -0.0858957 0.0483318 0.0342423 -0.1272582 -0.1997426 -0.0547738 0.0369825 -0.1121373 -0.1816322 -0.0426424 0.0354572 70 13 distance travelled - total Open Field Behaviour distance travelled - total 1 1 Open Field Behaviour
ejection fraction -0.0300111 -0.1345066 0.0744844 0.0533150 -0.0525735 -0.1483174 0.0431705 0.0488499 -0.0284086 -0.0492579 -0.0075592 0.0106376 85 6 ejection fraction Echo Heart ejection fraction 1 1 Echo Heart ejection fraction -0.0300111 -0.1345066 0.0744844 0.0533150 -0.0525735 -0.1483174 0.0431705 0.0488499 -0.0284086 -0.0492579 -0.0075592 0.0106376 85 6 ejection fraction Echo Heart ejection fraction 1 1 Echo Heart
end-diastolic diameter 0.1120972 0.0431489 0.1810454 0.0351783 0.1743929 0.0875252 0.2612607 0.0443211 0.0600907 0.0354923 0.0846891 0.0125504 86 3 end-diastolic diameter Echo Heart end-diastolic diameter 1 1 Echo Heart end-diastolic diameter 0.1120972 0.0431489 0.1810454 0.0351783 0.1743929 0.0875252 0.2612607 0.0443211 0.0600907 0.0354923 0.0846891 0.0125504 86 3 end-diastolic diameter Echo Heart end-diastolic diameter 1 1 Echo Heart
end-systolic diameter -0.0084176 -0.0780811 0.0612459 0.0355433 0.0668966 -0.0016692 0.1354624 0.0349832 0.0763195 0.0451136 0.1075254 0.0159217 87 3 end-systolic diameter Echo Heart end-systolic diameter 1 1 Echo Heart end-systolic diameter -0.0084176 -0.0780811 0.0612459 0.0355433 0.0668966 -0.0016692 0.1354624 0.0349832 0.0763195 0.0451136 0.1075254 0.0159217 87 3 end-systolic diameter Echo Heart end-systolic diameter 1 1 Echo Heart
fasted blood glucose concentration -0.0177245 -0.1256855 0.0902366 0.0550832 0.0702824 -0.0302439 0.1708087 0.0512899 0.0868420 0.0493007 0.1243832 0.0191541 91 16 fasted blood glucose concentration Intraperitoneal glucose tolerance test (IPGTT) Metabolism fasted blood glucose concentration 1 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism fasted blood glucose concentration -0.0177245 -0.1256855 0.0902366 0.0550832 0.0702824 -0.0302439 0.1708087 0.0512899 0.0868420 0.0493007 0.1243832 0.0191541 91 16 fasted blood glucose concentration Intraperitoneal glucose tolerance test (IPGTT) Metabolism fasted blood glucose concentration 1 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism
fat mass 0.0408799 -0.0430149 0.1247746 0.0428042 0.3714313 0.2698790 0.4729837 0.0518134 0.3282080 0.2669032 0.3895129 0.0312786 92 17 fat mass Body Composition (DEXA lean/fat) Morphology fat mass 1 1 Body Composition (DEXA lean/fat) Morphology fat mass 0.0408799 -0.0430149 0.1247746 0.0428042 0.3714313 0.2698790 0.4729837 0.0518134 0.3282080 0.2669032 0.3895129 0.0312786 92 17 fat mass Body Composition (DEXA lean/fat) Morphology fat mass 1 1 Body Composition (DEXA lean/fat) Morphology
fat/body weight 0.0777327 -0.0119735 0.1674390 0.0457693 0.2020776 0.1083557 0.2957996 0.0478182 0.1235292 0.0638629 0.1831955 0.0304425 93 17 fat/body weight Body Composition (DEXA lean/fat) Morphology fat/body weight 1 1 Body Composition (DEXA lean/fat) Morphology fat/body weight 0.0777327 -0.0119735 0.1674390 0.0457693 0.2020776 0.1083557 0.2957996 0.0478182 0.1235292 0.0638629 0.1831955 0.0304425 93 17 fat/body weight Body Composition (DEXA lean/fat) Morphology fat/body weight 1 1 Body Composition (DEXA lean/fat) Morphology
forelimb and hindlimb grip strength measurement mean 0.0578158 0.0039998 0.1116318 0.0274577 0.1145986 0.0530521 0.1761451 0.0314018 0.0541888 0.0294838 0.0788938 0.0126048 96 16 forelimb and hindlimb grip strength measurement mean Grip Strength Morphology forelimb and hindlimb grip strength measurement mean 1 1 Grip Strength Morphology forelimb and hindlimb grip strength measurement mean 0.0578158 0.0039998 0.1116318 0.0274577 0.1145986 0.0530521 0.1761451 0.0314018 0.0541888 0.0294838 0.0788938 0.0126048 96 16 forelimb and hindlimb grip strength measurement mean Grip Strength Morphology forelimb and hindlimb grip strength measurement mean 1 1 Grip Strength Morphology
forelimb grip strength measurement mean 0.0265051 -0.0187240 0.0717341 0.0230765 0.0995076 0.0539740 0.1450413 0.0232319 0.0697061 0.0438625 0.0955496 0.0131857 97 16 forelimb grip strength measurement mean Grip Strength Morphology forelimb grip strength measurement mean 1 1 Grip Strength Morphology forelimb grip strength measurement mean 0.0265051 -0.0187240 0.0717341 0.0230765 0.0995076 0.0539740 0.1450413 0.0232319 0.0697061 0.0438625 0.0955496 0.0131857 97 16 forelimb grip strength measurement mean Grip Strength Morphology forelimb grip strength measurement mean 1 1 Grip Strength Morphology
fractional shortening -0.0148852 -0.1161666 0.0863961 0.0516751 -0.0575326 -0.1558559 0.0407907 0.0501659 -0.0413498 -0.0567105 -0.0259891 0.0078372 98 7 fractional shortening Echo Heart fractional shortening 1 1 Echo Heart fractional shortening -0.0148852 -0.1161666 0.0863961 0.0516751 -0.0575326 -0.1558559 0.0407907 0.0501659 -0.0413498 -0.0567105 -0.0259891 0.0078372 98 7 fractional shortening Echo Heart fractional shortening 1 1 Echo Heart
free fatty acids 0.0281576 -0.1002531 0.1565683 0.0655169 0.0554109 -0.0736861 0.1845079 0.0658670 0.0193783 -0.0093700 0.0481266 0.0146678 99 5 free fatty acids Clinical Chemistry Physiology free fatty acids 1 1 Clinical Chemistry Physiology free fatty acids 0.0281576 -0.1002531 0.1565683 0.0655169 0.0554109 -0.0736861 0.1845079 0.0658670 0.0193783 -0.0093700 0.0481266 0.0146678 99 5 free fatty acids Clinical Chemistry Physiology free fatty acids 1 1 Clinical Chemistry Physiology
fructosamine -0.0397864 -0.1198801 0.0403073 0.0408649 -0.0678231 -0.1513538 0.0157075 0.0426184 -0.0283579 -0.0692447 0.0125289 0.0208610 100 6 fructosamine Clinical Chemistry Physiology fructosamine 1 1 Clinical Chemistry Physiology fructosamine -0.0397864 -0.1198801 0.0403073 0.0408649 -0.0678231 -0.1513538 0.0157075 0.0426184 -0.0283579 -0.0692447 0.0125289 0.0208610 100 6 fructosamine Clinical Chemistry Physiology fructosamine 1 1 Clinical Chemistry Physiology
glucose 0.0692601 0.0184025 0.1201176 0.0259482 0.1279473 0.0423001 0.2135946 0.0436984 0.0650887 0.0218496 0.1083279 0.0220612 101 16 glucose Clinical Chemistry Physiology glucose 1 1 Clinical Chemistry Physiology glucose 0.0692601 0.0184025 0.1201176 0.0259482 0.1279473 0.0423001 0.2135946 0.0436984 0.0650887 0.0218496 0.1083279 0.0220612 101 16 glucose Clinical Chemistry Physiology glucose 1 1 Clinical Chemistry Physiology
hdl-cholesterol -0.0650177 -0.1255786 -0.0044568 0.0308990 0.1724354 0.0701062 0.2747646 0.0522097 0.2606961 0.2180421 0.3033501 0.0217626 102 15 hdl-cholesterol Clinical Chemistry Physiology hdl-cholesterol 1 1 Clinical Chemistry Physiology hdl-cholesterol -0.0650177 -0.1255786 -0.0044568 0.0308990 0.1724354 0.0701062 0.2747646 0.0522097 0.2606961 0.2180421 0.3033501 0.0217626 102 15 hdl-cholesterol Clinical Chemistry Physiology hdl-cholesterol 1 1 Clinical Chemistry Physiology
heart weight 0.1766832 0.0672843 0.2860820 0.0558168 0.3651806 0.2169840 0.5133772 0.0756119 0.1737615 0.1409037 0.2066193 0.0167645 103 15 heart weight Heart Weight Morphology heart weight 1 1 Heart Weight Morphology heart weight 0.1766832 0.0672843 0.2860820 0.0558168 0.3651806 0.2169840 0.5133772 0.0756119 0.1737615 0.1409037 0.2066193 0.0167645 103 15 heart weight Heart Weight Morphology heart weight 1 1 Heart Weight Morphology
heart weight normalised against body weight 0.0794303 -0.0060591 0.1649198 0.0436179 0.0355574 -0.0973272 0.1684419 0.0677995 -0.0495578 -0.0835809 -0.0155346 0.0173591 104 14 heart weight normalised against body weight Heart Weight Morphology heart weight normalised against body weight 1 1 Heart Weight Morphology heart weight normalised against body weight 0.0794303 -0.0060591 0.1649198 0.0436179 0.0355574 -0.0973272 0.1684419 0.0677995 -0.0495578 -0.0835809 -0.0155346 0.0173591 104 14 heart weight normalised against body weight Heart Weight Morphology heart weight normalised against body weight 1 1 Heart Weight Morphology
hematocrit 0.0566356 -0.0516862 0.1649575 0.0552673 0.0737071 -0.0328632 0.1802774 0.0543736 0.0173967 0.0035179 0.0312754 0.0070811 105 17 hematocrit Hematology Hematology hematocrit 1 1 Hematology Hematology hematocrit 0.0566356 -0.0516862 0.1649575 0.0552673 0.0737071 -0.0328632 0.1802774 0.0543736 0.0173967 0.0035179 0.0312754 0.0070811 105 17 hematocrit Hematology Hematology hematocrit 1 1 Hematology Hematology
hemoglobin 0.0867000 0.0269936 0.1464064 0.0304630 0.0867345 0.0194022 0.1540668 0.0343538 0.0051992 -0.0080216 0.0184199 0.0067454 106 17 hemoglobin Hematology Hematology hemoglobin 1 1 Hematology Hematology hemoglobin 0.0867000 0.0269936 0.1464064 0.0304630 0.0867345 0.0194022 0.1540668 0.0343538 0.0051992 -0.0080216 0.0184199 0.0067454 106 17 hemoglobin Hematology Hematology hemoglobin 1 1 Hematology Hematology
hr -0.0634490 -0.1734699 0.0465718 0.0561341 -0.0140315 -0.1488474 0.1207843 0.0687849 0.0406617 -0.0139214 0.0952448 0.0278490 107 12 hr Electrocardiogram (ECG) Heart hr 1 1 Electrocardiogram (ECG) Heart hr -0.0634490 -0.1734699 0.0465718 0.0561341 -0.0140315 -0.1488474 0.1207843 0.0687849 0.0406617 -0.0139214 0.0952448 0.0278490 107 12 hr Electrocardiogram (ECG) Heart hr 1 1 Electrocardiogram (ECG) Heart
hrv 0.1722593 0.1094294 0.2350892 0.0320567 -0.0813225 -0.2125462 0.0499011 0.0669521 -0.2504990 -0.3657436 -0.1352545 0.0587993 108 7 hrv Electrocardiogram (ECG) Heart hrv 1 1 Electrocardiogram (ECG) Heart hrv 0.1722593 0.1094294 0.2350892 0.0320567 -0.0813225 -0.2125462 0.0499011 0.0669521 -0.2504990 -0.3657436 -0.1352545 0.0587993 108 7 hrv Electrocardiogram (ECG) Heart hrv 1 1 Electrocardiogram (ECG) Heart
initial response to glucose challenge -0.0968821 -0.1503780 -0.0433861 0.0272943 0.0429971 0.0141807 0.0718136 0.0147026 0.1183626 0.0853242 0.1514009 0.0168566 109 16 initial response to glucose challenge Intraperitoneal glucose tolerance test (IPGTT) Metabolism initial response to glucose challenge 1 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism initial response to glucose challenge -0.0968821 -0.1503780 -0.0433861 0.0272943 0.0429971 0.0141807 0.0718136 0.0147026 0.1183626 0.0853242 0.1514009 0.0168566 109 16 initial response to glucose challenge Intraperitoneal glucose tolerance test (IPGTT) Metabolism initial response to glucose challenge 1 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism
insulin -0.0993292 -0.3721975 0.1735391 0.1392211 0.1774003 -0.1938091 0.5486096 0.1893960 0.4445455 0.0944498 0.7946412 0.1786236 110 8 insulin Insulin Blood Level Metabolism insulin 1 1 Insulin Blood Level Metabolism insulin -0.0993292 -0.3721975 0.1735391 0.1392211 0.1774003 -0.1938091 0.5486096 0.1893960 0.4445455 0.0944498 0.7946412 0.1786236 110 8 insulin Insulin Blood Level Metabolism insulin 1 1 Insulin Blood Level Metabolism
iron -0.0974214 -0.2141737 0.0193310 0.0595686 -0.2534898 -0.3963648 -0.1106147 0.0728968 -0.1527977 -0.1930307 -0.1125646 0.0205274 111 11 iron Clinical Chemistry Physiology iron 1 1 Clinical Chemistry Physiology iron -0.0974214 -0.2141737 0.0193310 0.0595686 -0.2534898 -0.3963648 -0.1106147 0.0728968 -0.1527977 -0.1930307 -0.1125646 0.0205274 111 11 iron Clinical Chemistry Physiology iron 1 1 Clinical Chemistry Physiology
lactate dehydrogenase 0.0941249 -0.0214022 0.2096519 0.0589435 0.1409270 -0.0620594 0.3439133 0.1035664 0.0318801 -0.1412218 0.2049819 0.0883189 112 4 lactate dehydrogenase Clinical Chemistry Physiology lactate dehydrogenase 1 1 Clinical Chemistry Physiology lactate dehydrogenase 0.0941249 -0.0214022 0.2096519 0.0589435 0.1409270 -0.0620594 0.3439133 0.1035664 0.0318801 -0.1412218 0.2049819 0.0883189 112 4 lactate dehydrogenase Clinical Chemistry Physiology lactate dehydrogenase 1 1 Clinical Chemistry Physiology
latency to center entry 0.1254239 0.0330185 0.2178293 0.0471465 0.3641221 0.2056000 0.5226441 0.0808801 0.2734519 0.0739366 0.4729672 0.1017954 115 10 latency to center entry Open Field Behaviour latency to center entry 1 1 Open Field Behaviour latency to center entry 0.1254239 0.0330185 0.2178293 0.0471465 0.3641221 0.2056000 0.5226441 0.0808801 0.2734519 0.0739366 0.4729672 0.1017954 115 10 latency to center entry Open Field Behaviour latency to center entry 1 1 Open Field Behaviour
ldl-cholesterol 0.4231644 0.1551776 0.6911512 0.1367305 0.2669283 -0.0956833 0.6295400 0.1850093 -0.1615499 -0.6010478 0.2779480 0.2242378 116 7 ldl-cholesterol Clinical Chemistry Physiology ldl-cholesterol 1 1 Clinical Chemistry Physiology ldl-cholesterol 0.4231644 0.1551776 0.6911512 0.1367305 0.2669283 -0.0956833 0.6295400 0.1850093 -0.1615499 -0.6010478 0.2779480 0.2242378 116 7 ldl-cholesterol Clinical Chemistry Physiology ldl-cholesterol 1 1 Clinical Chemistry Physiology
lean mass 0.1435756 0.0759342 0.2112170 0.0345115 0.3382447 0.2664863 0.4100031 0.0366121 0.1928945 0.1752425 0.2105465 0.0090063 117 17 lean mass Body Composition (DEXA lean/fat) Morphology lean mass 1 1 Body Composition (DEXA lean/fat) Morphology lean mass 0.1435756 0.0759342 0.2112170 0.0345115 0.3382447 0.2664863 0.4100031 0.0366121 0.1928945 0.1752425 0.2105465 0.0090063 117 17 lean mass Body Composition (DEXA lean/fat) Morphology lean mass 1 1 Body Composition (DEXA lean/fat) Morphology
lean/body weight 0.1953833 0.0912480 0.2995186 0.0531312 0.1840786 0.0863764 0.2817807 0.0498490 -0.0122785 -0.0257504 0.0011934 0.0068736 118 17 lean/body weight Body Composition (DEXA lean/fat) Morphology lean/body weight 1 1 Body Composition (DEXA lean/fat) Morphology lean/body weight 0.1953833 0.0912480 0.2995186 0.0531312 0.1840786 0.0863764 0.2817807 0.0498490 -0.0122785 -0.0257504 0.0011934 0.0068736 118 17 lean/body weight Body Composition (DEXA lean/fat) Morphology lean/body weight 1 1 Body Composition (DEXA lean/fat) Morphology
left anterior chamber depth -0.1854856 -0.4305058 0.0595347 0.1250126 -0.1534983 -0.4007283 0.0937316 0.1261401 0.0331746 0.0284172 0.0379321 0.0024273 119 2 left anterior chamber depth Eye Morphology Eye left anterior chamber depth 1 1 Eye Morphology Eye left anterior chamber depth -0.1854856 -0.4305058 0.0595347 0.1250126 -0.1534983 -0.4007283 0.0937316 0.1261401 0.0331746 0.0284172 0.0379321 0.0024273 119 2 left anterior chamber depth Eye Morphology Eye left anterior chamber depth 1 1 Eye Morphology Eye
left corneal thickness -0.1446634 -0.2339950 -0.0553319 0.0455782 -0.1352252 -0.2234178 -0.0470327 0.0449970 0.0075283 -0.0057082 0.0207648 0.0067535 120 2 left corneal thickness Eye Morphology Eye left corneal thickness 1 1 Eye Morphology Eye left corneal thickness -0.1446634 -0.2339950 -0.0553319 0.0455782 -0.1352252 -0.2234178 -0.0470327 0.0449970 0.0075283 -0.0057082 0.0207648 0.0067535 120 2 left corneal thickness Eye Morphology Eye left corneal thickness 1 1 Eye Morphology Eye
left inner nuclear layer 0.0480458 -0.0360706 0.1321622 0.0429173 0.0487217 -0.0347622 0.1322057 0.0425946 0.0006956 -0.0095012 0.0108923 0.0052025 121 2 left inner nuclear layer Eye Morphology Eye left inner nuclear layer 1 1 Eye Morphology Eye left inner nuclear layer 0.0480458 -0.0360706 0.1321622 0.0429173 0.0487217 -0.0347622 0.1322057 0.0425946 0.0006956 -0.0095012 0.0108923 0.0052025 121 2 left inner nuclear layer Eye Morphology Eye left inner nuclear layer 1 1 Eye Morphology Eye
left outer nuclear layer -0.0675012 -0.1511666 0.0161641 0.0426872 -0.0618025 -0.1452865 0.0216814 0.0425946 0.0063811 0.0011702 0.0115921 0.0026587 122 2 left outer nuclear layer Eye Morphology Eye left outer nuclear layer 1 1 Eye Morphology Eye left outer nuclear layer -0.0675012 -0.1511666 0.0161641 0.0426872 -0.0618025 -0.1452865 0.0216814 0.0425946 0.0063811 0.0011702 0.0115921 0.0026587 122 2 left outer nuclear layer Eye Morphology Eye left outer nuclear layer 1 1 Eye Morphology Eye
left posterior chamber depth -0.2631046 -0.4734756 -0.0527336 0.1073341 -0.2687360 -0.4790035 -0.0584686 0.1072813 -0.0026027 -0.0146655 0.0094600 0.0061546 123 2 left posterior chamber depth Eye Morphology Eye left posterior chamber depth 1 1 Eye Morphology Eye left posterior chamber depth -0.2631046 -0.4734756 -0.0527336 0.1073341 -0.2687360 -0.4790035 -0.0584686 0.1072813 -0.0026027 -0.0146655 0.0094600 0.0061546 123 2 left posterior chamber depth Eye Morphology Eye left posterior chamber depth 1 1 Eye Morphology Eye
left total retinal thickness -0.1975770 -0.4386627 0.0435087 0.1230052 -0.1932648 -0.4269751 0.0404456 0.1192422 0.0027995 -0.0034907 0.0090898 0.0032094 124 3 left total retinal thickness Eye Morphology Eye left total retinal thickness 1 1 Eye Morphology Eye left total retinal thickness -0.1975770 -0.4386627 0.0435087 0.1230052 -0.1932648 -0.4269751 0.0404456 0.1192422 0.0027995 -0.0034907 0.0090898 0.0032094 124 3 left total retinal thickness Eye Morphology Eye left total retinal thickness 1 1 Eye Morphology Eye
locomotor activity 0.0960106 0.0224214 0.1695997 0.0375462 -0.0159064 -0.0579694 0.0261566 0.0214611 -0.1105803 -0.1761043 -0.0450562 0.0334313 125 13 locomotor activity Combined SHIRPA and Dysmorphology Behaviour locomotor activity 1 1 Combined SHIRPA and Dysmorphology Behaviour locomotor activity 0.0960106 0.0224214 0.1695997 0.0375462 -0.0159064 -0.0579694 0.0261566 0.0214611 -0.1105803 -0.1761043 -0.0450562 0.0334313 125 13 locomotor activity Combined SHIRPA and Dysmorphology Behaviour locomotor activity 1 1 Combined SHIRPA and Dysmorphology Behaviour
lvawd 0.0228924 -0.0247048 0.0704896 0.0242847 0.0454075 -0.0013249 0.0921399 0.0238435 0.0246614 0.0114095 0.0379132 0.0067613 126 5 lvawd Echo Heart lvawd 1 1 Echo Heart lvawd 0.0228924 -0.0247048 0.0704896 0.0242847 0.0454075 -0.0013249 0.0921399 0.0238435 0.0246614 0.0114095 0.0379132 0.0067613 126 5 lvawd Echo Heart lvawd 1 1 Echo Heart
lvaws -0.0017749 -0.2517581 0.2482083 0.1275448 0.0232601 -0.1776617 0.2241819 0.1025130 0.0112569 -0.0306073 0.0531211 0.0213597 127 4 lvaws Echo Heart lvaws 1 1 Echo Heart lvaws -0.0017749 -0.2517581 0.2482083 0.1275448 0.0232601 -0.1776617 0.2241819 0.1025130 0.0112569 -0.0306073 0.0531211 0.0213597 127 4 lvaws Echo Heart lvaws 1 1 Echo Heart
lvidd 0.0453256 -0.0241892 0.1148405 0.0354674 0.0981450 0.0208146 0.1754754 0.0394550 0.0528053 0.0378669 0.0677436 0.0076218 128 7 lvidd Echo Heart lvidd 1 1 Echo Heart lvidd 0.0453256 -0.0241892 0.1148405 0.0354674 0.0981450 0.0208146 0.1754754 0.0394550 0.0528053 0.0378669 0.0677436 0.0076218 128 7 lvidd Echo Heart lvidd 1 1 Echo Heart
lvids -0.0635228 -0.1990947 0.0720491 0.0691706 0.0083352 -0.1335894 0.1502598 0.0724118 0.0756177 0.0525777 0.0986576 0.0117553 129 7 lvids Echo Heart lvids 1 1 Echo Heart lvids -0.0635228 -0.1990947 0.0720491 0.0691706 0.0083352 -0.1335894 0.1502598 0.0724118 0.0756177 0.0525777 0.0986576 0.0117553 129 7 lvids Echo Heart lvids 1 1 Echo Heart
lvpwd -0.0317376 -0.1258062 0.0623311 0.0479951 -0.0104248 -0.1271922 0.1063426 0.0595763 0.0302674 0.0131900 0.0473448 0.0087131 130 7 lvpwd Echo Heart lvpwd 1 1 Echo Heart lvpwd -0.0317376 -0.1258062 0.0623311 0.0479951 -0.0104248 -0.1271922 0.1063426 0.0595763 0.0302674 0.0131900 0.0473448 0.0087131 130 7 lvpwd Echo Heart lvpwd 1 1 Echo Heart
lvpws -0.0190522 -0.1014670 0.0633627 0.0420492 0.0089592 -0.0823356 0.1002540 0.0465798 0.0268487 0.0063146 0.0473828 0.0104768 131 6 lvpws Echo Heart lvpws 1 1 Echo Heart lvpws -0.0190522 -0.1014670 0.0633627 0.0420492 0.0089592 -0.0823356 0.1002540 0.0465798 0.0268487 0.0063146 0.0473828 0.0104768 131 6 lvpws Echo Heart lvpws 1 1 Echo Heart
magnesium 0.0161699 -0.0231196 0.0554593 0.0200460 -0.0513056 -0.1167021 0.0140909 0.0333662 -0.0413354 -0.1135580 0.0308871 0.0368489 134 6 magnesium Urinalysis Physiology magnesium 1 1 Urinalysis Physiology magnesium 0.0161699 -0.0231196 0.0554593 0.0200460 -0.0513056 -0.1167021 0.0140909 0.0333662 -0.0413354 -0.1135580 0.0308871 0.0368489 134 6 magnesium Urinalysis Physiology magnesium 1 1 Urinalysis Physiology
mean cell hemoglobin concentration 0.0378015 -0.0880637 0.1636666 0.0642181 0.0253063 -0.1086076 0.1592202 0.0683247 -0.0113450 -0.0150702 -0.0076199 0.0019006 135 17 mean cell hemoglobin concentration Hematology Hematology mean cell hemoglobin concentration 1 1 Hematology Hematology mean cell hemoglobin concentration 0.0378015 -0.0880637 0.1636666 0.0642181 0.0253063 -0.1086076 0.1592202 0.0683247 -0.0113450 -0.0150702 -0.0076199 0.0019006 135 17 mean cell hemoglobin concentration Hematology Hematology mean cell hemoglobin concentration 1 1 Hematology Hematology
mean cell volume 0.0039175 -0.0957495 0.1035845 0.0508514 -0.0030447 -0.0961742 0.0900848 0.0475159 -0.0063502 -0.0099649 -0.0027355 0.0018443 136 17 mean cell volume Hematology Hematology mean cell volume 1 1 Hematology Hematology mean cell volume 0.0039175 -0.0957495 0.1035845 0.0508514 -0.0030447 -0.0961742 0.0900848 0.0475159 -0.0063502 -0.0099649 -0.0027355 0.0018443 136 17 mean cell volume Hematology Hematology mean cell volume 1 1 Hematology Hematology
mean corpuscular hemoglobin -0.0025833 -0.0653065 0.0601398 0.0320022 -0.0193465 -0.0824670 0.0437741 0.0322049 -0.0169768 -0.0197231 -0.0142305 0.0014012 137 17 mean corpuscular hemoglobin Hematology Hematology mean corpuscular hemoglobin 1 1 Hematology Hematology mean corpuscular hemoglobin -0.0025833 -0.0653065 0.0601398 0.0320022 -0.0193465 -0.0824670 0.0437741 0.0322049 -0.0169768 -0.0197231 -0.0142305 0.0014012 137 17 mean corpuscular hemoglobin Hematology Hematology mean corpuscular hemoglobin 1 1 Hematology Hematology
mean platelet volume 0.0487366 -0.0044688 0.1019419 0.0271461 0.0353913 -0.0210323 0.0918150 0.0287881 -0.0174066 -0.0276044 -0.0072089 0.0052030 138 13 mean platelet volume Hematology Hematology mean platelet volume 1 1 Hematology Hematology mean platelet volume 0.0487366 -0.0044688 0.1019419 0.0271461 0.0353913 -0.0210323 0.0918150 0.0287881 -0.0174066 -0.0276044 -0.0072089 0.0052030 138 13 mean platelet volume Hematology Hematology mean platelet volume 1 1 Hematology Hematology
mean r amplitude 0.0084703 -0.0282092 0.0451499 0.0187144 -0.0948208 -0.1630495 -0.0265922 0.0348112 -0.0835612 -0.1503108 -0.0168116 0.0340565 139 8 mean r amplitude Electrocardiogram (ECG) Heart mean r amplitude 1 1 Electrocardiogram (ECG) Heart mean r amplitude 0.0084703 -0.0282092 0.0451499 0.0187144 -0.0948208 -0.1630495 -0.0265922 0.0348112 -0.0835612 -0.1503108 -0.0168116 0.0340565 139 8 mean r amplitude Electrocardiogram (ECG) Heart mean r amplitude 1 1 Electrocardiogram (ECG) Heart
mean sr amplitude 0.0284617 -0.0131943 0.0701178 0.0212535 -0.0876811 -0.1270777 -0.0482845 0.0201007 -0.1130259 -0.1558048 -0.0702470 0.0218264 140 7 mean sr amplitude Electrocardiogram (ECG) Heart mean sr amplitude 1 1 Electrocardiogram (ECG) Heart mean sr amplitude 0.0284617 -0.0131943 0.0701178 0.0212535 -0.0876811 -0.1270777 -0.0482845 0.0201007 -0.1130259 -0.1558048 -0.0702470 0.0218264 140 7 mean sr amplitude Electrocardiogram (ECG) Heart mean sr amplitude 1 1 Electrocardiogram (ECG) Heart
number of center entries 0.0150703 -0.0534907 0.0836313 0.0349807 -0.0361259 -0.0952472 0.0229955 0.0301645 -0.0588092 -0.1679907 0.0503723 0.0557059 159 10 number of center entries Open Field Behaviour number of center entries 1 1 Open Field Behaviour number of center entries 0.0150703 -0.0534907 0.0836313 0.0349807 -0.0361259 -0.0952472 0.0229955 0.0301645 -0.0588092 -0.1679907 0.0503723 0.0557059 159 10 number of center entries Open Field Behaviour number of center entries 1 1 Open Field Behaviour
number of rears - total -0.0011326 -0.1141113 0.1118461 0.0576432 0.1869490 -0.0392422 0.4131402 0.1154058 0.1794328 0.0568682 0.3019974 0.0625341 164 8 number of rears - total Open Field Behaviour number of rears - total 1 1 Open Field Behaviour number of rears - total -0.0011326 -0.1141113 0.1118461 0.0576432 0.1869490 -0.0392422 0.4131402 0.1154058 0.1794328 0.0568682 0.3019974 0.0625341 164 8 number of rears - total Open Field Behaviour number of rears - total 1 1 Open Field Behaviour
others -0.1684902 -0.2596648 -0.0773156 0.0465185 -0.1515195 -0.2435956 -0.0594434 0.0469785 0.0196158 0.0049349 0.0342967 0.0074904 169 6 others Immunophenotyping Immunology others 1 1 Immunophenotyping Immunology others -0.1684902 -0.2596648 -0.0773156 0.0465185 -0.1515195 -0.2435956 -0.0594434 0.0469785 0.0196158 0.0049349 0.0342967 0.0074904 169 6 others Immunophenotyping Immunology others 1 1 Immunophenotyping Immunology
pdcs -0.1732553 -0.4003845 0.0538738 0.1158844 -0.2572491 -0.7186201 0.2041219 0.2353977 -0.0915619 -0.2522236 0.0690997 0.0819717 170 5 pdcs Immunophenotyping Immunology pdcs 1 1 Immunophenotyping Immunology pdcs -0.1732553 -0.4003845 0.0538738 0.1158844 -0.2572491 -0.7186201 0.2041219 0.2353977 -0.0915619 -0.2522236 0.0690997 0.0819717 170 5 pdcs Immunophenotyping Immunology pdcs 1 1 Immunophenotyping Immunology
percentage center time -0.0219679 -0.0863184 0.0423826 0.0328325 -0.0188907 -0.0912088 0.0534274 0.0368977 -0.0061802 -0.0972542 0.0848938 0.0464672 171 13 percentage center time Open Field Behaviour percentage center time 1 1 Open Field Behaviour percentage center time -0.0219679 -0.0863184 0.0423826 0.0328325 -0.0188907 -0.0912088 0.0534274 0.0368977 -0.0061802 -0.0972542 0.0848938 0.0464672 171 13 percentage center time Open Field Behaviour percentage center time 1 1 Open Field Behaviour
periphery average speed -0.0444272 -0.1082870 0.0194327 0.0325822 -0.1401304 -0.2117709 -0.0684898 0.0365520 -0.0963838 -0.1446043 -0.0481633 0.0246028 174 12 periphery average speed Open Field Behaviour periphery average speed 1 1 Open Field Behaviour periphery average speed -0.0444272 -0.1082870 0.0194327 0.0325822 -0.1401304 -0.2117709 -0.0684898 0.0365520 -0.0963838 -0.1446043 -0.0481633 0.0246028 174 12 periphery average speed Open Field Behaviour periphery average speed 1 1 Open Field Behaviour
periphery distance travelled -0.0313217 -0.0918314 0.0291879 0.0308728 -0.1342236 -0.1874097 -0.0810376 0.0271362 -0.1037239 -0.1714836 -0.0359643 0.0345719 175 12 periphery distance travelled Open Field Behaviour periphery distance travelled 1 1 Open Field Behaviour periphery distance travelled -0.0313217 -0.0918314 0.0291879 0.0308728 -0.1342236 -0.1874097 -0.0810376 0.0271362 -0.1037239 -0.1714836 -0.0359643 0.0345719 175 12 periphery distance travelled Open Field Behaviour periphery distance travelled 1 1 Open Field Behaviour
periphery permanence time -0.0369177 -0.1277076 0.0538721 0.0463222 -0.0294978 -0.1006346 0.0416390 0.0362950 0.0077038 -0.0137850 0.0291927 0.0109639 176 13 periphery permanence time Open Field Behaviour periphery permanence time 1 1 Open Field Behaviour periphery permanence time -0.0369177 -0.1277076 0.0538721 0.0463222 -0.0294978 -0.1006346 0.0416390 0.0362950 0.0077038 -0.0137850 0.0291927 0.0109639 176 13 periphery permanence time Open Field Behaviour periphery permanence time 1 1 Open Field Behaviour
periphery resting time -0.0536346 -0.1266045 0.0193353 0.0372302 -0.0572459 -0.1071515 -0.0073404 0.0254625 0.0026007 -0.0558538 0.0610552 0.0298243 177 10 periphery resting time Open Field Behaviour periphery resting time 1 1 Open Field Behaviour periphery resting time -0.0536346 -0.1266045 0.0193353 0.0372302 -0.0572459 -0.1071515 -0.0073404 0.0254625 0.0026007 -0.0558538 0.0610552 0.0298243 177 10 periphery resting time Open Field Behaviour periphery resting time 1 1 Open Field Behaviour
phosphorus -0.0485897 -0.0839101 -0.0132693 0.0180209 -0.0826120 -0.1576473 -0.0075767 0.0382840 -0.0420616 -0.0813582 -0.0027650 0.0200497 178 16 phosphorus Clinical Chemistry Physiology phosphorus 1 1 Clinical Chemistry Physiology phosphorus -0.0485897 -0.0839101 -0.0132693 0.0180209 -0.0826120 -0.1576473 -0.0075767 0.0382840 -0.0420616 -0.0813582 -0.0027650 0.0200497 178 16 phosphorus Clinical Chemistry Physiology phosphorus 1 1 Clinical Chemistry Physiology
platelet count 0.0737198 0.0205862 0.1268534 0.0271095 0.2415135 0.1865330 0.2964940 0.0280518 0.1642192 0.1369820 0.1914563 0.0138968 179 17 platelet count Hematology Hematology platelet count 1 1 Hematology Hematology platelet count 0.0737198 0.0205862 0.1268534 0.0271095 0.2415135 0.1865330 0.2964940 0.0280518 0.1642192 0.1369820 0.1914563 0.0138968 179 17 platelet count Hematology Hematology platelet count 1 1 Hematology Hematology
pnn5(6>ms) 0.2906905 0.1716202 0.4097607 0.0607512 -0.2926013 -0.5272121 -0.0579905 0.1197016 -0.6004767 -0.9244113 -0.2765420 0.1652758 180 6 pnn5(6>ms) Electrocardiogram (ECG) Heart pnn5(6>ms) 1 1 Electrocardiogram (ECG) Heart pnn5(6>ms) 0.2906905 0.1716202 0.4097607 0.0607512 -0.2926013 -0.5272121 -0.0579905 0.1197016 -0.6004767 -0.9244113 -0.2765420 0.1652758 180 6 pnn5(6>ms) Electrocardiogram (ECG) Heart pnn5(6>ms) 1 1 Electrocardiogram (ECG) Heart
potassium -0.0705522 -0.2214989 0.0803945 0.0770150 -0.0074675 -0.1729366 0.1580015 0.0844245 0.0704162 0.0476647 0.0931676 0.0116081 181 10 potassium Clinical Chemistry Physiology potassium 1 1 Clinical Chemistry Physiology potassium -0.0705522 -0.2214989 0.0803945 0.0770150 -0.0074675 -0.1729366 0.1580015 0.0844245 0.0704162 0.0476647 0.0931676 0.0116081 181 10 potassium Clinical Chemistry Physiology potassium 1 1 Clinical Chemistry Physiology
pq -0.0650960 -0.1538776 0.0236857 0.0452976 -0.0648322 -0.1270688 -0.0025955 0.0317540 0.0015656 -0.0259865 0.0291178 0.0140575 182 7 pq Electrocardiogram (ECG) Heart pq 1 1 Electrocardiogram (ECG) Heart pq -0.0650960 -0.1538776 0.0236857 0.0452976 -0.0648322 -0.1270688 -0.0025955 0.0317540 0.0015656 -0.0259865 0.0291178 0.0140575 182 7 pq Electrocardiogram (ECG) Heart pq 1 1 Electrocardiogram (ECG) Heart
pr -0.0564860 -0.1048371 -0.0081349 0.0246694 -0.0754718 -0.1235224 -0.0274213 0.0245160 -0.0183785 -0.0319887 -0.0047684 0.0069441 183 11 pr Electrocardiogram (ECG) Heart pr 1 1 Electrocardiogram (ECG) Heart pr -0.0564860 -0.1048371 -0.0081349 0.0246694 -0.0754718 -0.1235224 -0.0274213 0.0245160 -0.0183785 -0.0319887 -0.0047684 0.0069441 183 11 pr Electrocardiogram (ECG) Heart pr 1 1 Electrocardiogram (ECG) Heart
qrs 0.0725454 0.0354722 0.1096185 0.0189152 0.0681074 0.0300869 0.1061278 0.0193986 -0.0054233 -0.0154885 0.0046418 0.0051354 184 11 qrs Electrocardiogram (ECG) Heart qrs 1 1 Electrocardiogram (ECG) Heart qrs 0.0725454 0.0354722 0.1096185 0.0189152 0.0681074 0.0300869 0.1061278 0.0193986 -0.0054233 -0.0154885 0.0046418 0.0051354 184 11 qrs Electrocardiogram (ECG) Heart qrs 1 1 Electrocardiogram (ECG) Heart
qtc 0.0328106 -0.0101032 0.0757244 0.0218952 0.0310473 -0.0207365 0.0828310 0.0264208 -0.0005046 -0.0085696 0.0075604 0.0041149 185 10 qtc Electrocardiogram (ECG) Heart qtc 1 1 Electrocardiogram (ECG) Heart qtc 0.0328106 -0.0101032 0.0757244 0.0218952 0.0310473 -0.0207365 0.0828310 0.0264208 -0.0005046 -0.0085696 0.0075604 0.0041149 185 10 qtc Electrocardiogram (ECG) Heart qtc 1 1 Electrocardiogram (ECG) Heart
qtc dispersion 0.0031258 -0.0523919 0.0586435 0.0283259 -0.0046501 -0.1060530 0.0967528 0.0517371 -0.0077373 -0.0510162 0.0355416 0.0220815 186 7 qtc dispersion Electrocardiogram (ECG) Heart qtc dispersion 1 1 Electrocardiogram (ECG) Heart qtc dispersion 0.0031258 -0.0523919 0.0586435 0.0283259 -0.0046501 -0.1060530 0.0967528 0.0517371 -0.0077373 -0.0510162 0.0355416 0.0220815 186 7 qtc dispersion Electrocardiogram (ECG) Heart qtc dispersion 1 1 Electrocardiogram (ECG) Heart
red blood cell count 0.0773455 0.0071933 0.1474977 0.0357926 0.0997278 0.0316996 0.1677560 0.0347089 0.0228493 0.0088583 0.0368404 0.0071384 187 17 red blood cell count Hematology Hematology red blood cell count 1 1 Hematology Hematology red blood cell count 0.0773455 0.0071933 0.1474977 0.0357926 0.0997278 0.0316996 0.1677560 0.0347089 0.0228493 0.0088583 0.0368404 0.0071384 187 17 red blood cell count Hematology Hematology red blood cell count 1 1 Hematology Hematology
red blood cell distribution width 0.1248464 -0.0035148 0.2532076 0.0654916 0.1353460 -0.0035862 0.2742782 0.0708851 0.0104789 -0.0032056 0.0241635 0.0069821 188 13 red blood cell distribution width Hematology Hematology red blood cell distribution width 1 1 Hematology Hematology red blood cell distribution width 0.1248464 -0.0035148 0.2532076 0.0654916 0.1353460 -0.0035862 0.2742782 0.0708851 0.0104789 -0.0032056 0.0241635 0.0069821 188 13 red blood cell distribution width Hematology Hematology red blood cell distribution width 1 1 Hematology Hematology
respiration rate -0.1384843 -0.2178736 -0.0590950 0.0405055 -0.0703570 -0.1795875 0.0388735 0.0557309 0.0611034 0.0227141 0.0994926 0.0195867 189 4 respiration rate Echo Heart respiration rate 1 1 Echo Heart respiration rate -0.1384843 -0.2178736 -0.0590950 0.0405055 -0.0703570 -0.1795875 0.0388735 0.0557309 0.0611034 0.0227141 0.0994926 0.0195867 189 4 respiration rate Echo Heart respiration rate 1 1 Echo Heart
respiratory exchange ratio -0.0116565 -0.0896490 0.0663361 0.0397928 -0.0106530 -0.0878483 0.0665424 0.0393861 0.0017027 -0.0057348 0.0091402 0.0037947 190 9 respiratory exchange ratio Indirect Calorimetry Metabolism respiratory exchange ratio 1 1 Indirect Calorimetry Metabolism respiratory exchange ratio -0.0116565 -0.0896490 0.0663361 0.0397928 -0.0106530 -0.0878483 0.0665424 0.0393861 0.0017027 -0.0057348 0.0091402 0.0037947 190 9 respiratory exchange ratio Indirect Calorimetry Metabolism respiratory exchange ratio 1 1 Indirect Calorimetry Metabolism
right anterior chamber depth -0.4491432 -1.3293546 0.4310682 0.4490957 -0.4157377 -1.2918620 0.4603867 0.4470104 0.0316098 0.0264512 0.0367685 0.0026320 201 2 right anterior chamber depth Eye Morphology Eye right anterior chamber depth 1 1 Eye Morphology Eye right anterior chamber depth -0.4491432 -1.3293546 0.4310682 0.4490957 -0.4157377 -1.2918620 0.4603867 0.4470104 0.0316098 0.0264512 0.0367685 0.0026320 201 2 right anterior chamber depth Eye Morphology Eye right anterior chamber depth 1 1 Eye Morphology Eye
right corneal thickness -0.0355898 -0.2280522 0.1568726 0.0981969 -0.0306550 -0.1963692 0.1350592 0.0845496 -0.0013855 -0.0237830 0.0210121 0.0114275 202 2 right corneal thickness Eye Morphology Eye right corneal thickness 1 1 Eye Morphology Eye right corneal thickness -0.0355898 -0.2280522 0.1568726 0.0981969 -0.0306550 -0.1963692 0.1350592 0.0845496 -0.0013855 -0.0237830 0.0210121 0.0114275 202 2 right corneal thickness Eye Morphology Eye right corneal thickness 1 1 Eye Morphology Eye
right inner nuclear layer -0.2545083 -0.7633116 0.2542949 0.2595983 -0.2785114 -0.8373133 0.2802906 0.2851083 -0.0175090 -0.0664158 0.0313978 0.0249529 203 2 right inner nuclear layer Eye Morphology Eye right inner nuclear layer 1 1 Eye Morphology Eye right inner nuclear layer -0.2545083 -0.7633116 0.2542949 0.2595983 -0.2785114 -0.8373133 0.2802906 0.2851083 -0.0175090 -0.0664158 0.0313978 0.0249529 203 2 right inner nuclear layer Eye Morphology Eye right inner nuclear layer 1 1 Eye Morphology Eye
right outer nuclear layer 0.0061253 -0.0781241 0.0903746 0.0429851 0.0109098 -0.0731427 0.0949622 0.0428847 0.0055513 0.0000519 0.0110508 0.0028059 204 2 right outer nuclear layer Eye Morphology Eye right outer nuclear layer 1 1 Eye Morphology Eye right outer nuclear layer 0.0061253 -0.0781241 0.0903746 0.0429851 0.0109098 -0.0731427 0.0949622 0.0428847 0.0055513 0.0000519 0.0110508 0.0028059 204 2 right outer nuclear layer Eye Morphology Eye right outer nuclear layer 1 1 Eye Morphology Eye
right posterior chamber depth -0.0775673 -0.2905688 0.1354341 0.1086762 -0.0764571 -0.2893152 0.1364010 0.1086031 0.0071990 -0.0178434 0.0322413 0.0127769 205 2 right posterior chamber depth Eye Morphology Eye right posterior chamber depth 1 1 Eye Morphology Eye right posterior chamber depth -0.0775673 -0.2905688 0.1354341 0.1086762 -0.0764571 -0.2893152 0.1364010 0.1086031 0.0071990 -0.0178434 0.0322413 0.0127769 205 2 right posterior chamber depth Eye Morphology Eye right posterior chamber depth 1 1 Eye Morphology Eye
right total retinal thickness -0.1987993 -0.6457320 0.2481333 0.2280310 -0.1925482 -0.6285715 0.2434750 0.2224649 0.0052882 -0.0045957 0.0151720 0.0050429 206 3 right total retinal thickness Eye Morphology Eye right total retinal thickness 1 1 Eye Morphology Eye right total retinal thickness -0.1987993 -0.6457320 0.2481333 0.2280310 -0.1925482 -0.6285715 0.2434750 0.2224649 0.0052882 -0.0045957 0.0151720 0.0050429 206 3 right total retinal thickness Eye Morphology Eye right total retinal thickness 1 1 Eye Morphology Eye
rmssd 0.1800273 -0.0882317 0.4482864 0.1368694 -0.0161048 -0.4112809 0.3790712 0.2016241 -0.1178703 -0.2449843 0.0092436 0.0648552 207 7 rmssd Electrocardiogram (ECG) Heart rmssd 1 1 Electrocardiogram (ECG) Heart rmssd 0.1800273 -0.0882317 0.4482864 0.1368694 -0.0161048 -0.4112809 0.3790712 0.2016241 -0.1178703 -0.2449843 0.0092436 0.0648552 207 7 rmssd Electrocardiogram (ECG) Heart rmssd 1 1 Electrocardiogram (ECG) Heart
rp macrophage (cd19- cd11c-) -0.0765771 -0.3398075 0.1866533 0.1343037 -0.0747691 -0.3351316 0.1855933 0.1328404 -0.0746396 -0.2072980 0.0580188 0.0676841 208 6 rp macrophage (cd19- cd11c-) Immunophenotyping Immunology rp macrophage (cd19- cd11c-) 1 1 Immunophenotyping Immunology rp macrophage (cd19- cd11c-) -0.0765771 -0.3398075 0.1866533 0.1343037 -0.0747691 -0.3351316 0.1855933 0.1328404 -0.0746396 -0.2072980 0.0580188 0.0676841 208 6 rp macrophage (cd19- cd11c-) Immunophenotyping Immunology rp macrophage (cd19- cd11c-) 1 1 Immunophenotyping Immunology
rr -0.0761505 -0.1876687 0.0353678 0.0568981 -0.0896869 -0.2063458 0.0269721 0.0595210 -0.0125023 -0.0214082 -0.0035963 0.0045440 209 11 rr Electrocardiogram (ECG) Heart rr 1 1 Electrocardiogram (ECG) Heart rr -0.0761505 -0.1876687 0.0353678 0.0568981 -0.0896869 -0.2063458 0.0269721 0.0595210 -0.0125023 -0.0214082 -0.0035963 0.0045440 209 11 rr Electrocardiogram (ECG) Heart rr 1 1 Electrocardiogram (ECG) Heart
sodium 0.0262100 -0.1171674 0.1695873 0.0731531 0.0338228 -0.1337162 0.2013618 0.0854806 0.0099680 0.0065815 0.0133545 0.0017278 210 10 sodium Clinical Chemistry Physiology sodium 1 1 Clinical Chemistry Physiology sodium 0.0262100 -0.1171674 0.1695873 0.0731531 0.0338228 -0.1337162 0.2013618 0.0854806 0.0099680 0.0065815 0.0133545 0.0017278 210 10 sodium Clinical Chemistry Physiology sodium 1 1 Clinical Chemistry Physiology
spleen weight 0.1874259 -0.0500875 0.4249393 0.1211825 0.1133706 -0.1604807 0.3872220 0.1397227 -0.1542349 -0.2104415 -0.0980283 0.0286774 211 10 spleen weight Immunophenotyping Immunology spleen weight 1 1 Immunophenotyping Immunology spleen weight 0.1874259 -0.0500875 0.4249393 0.1211825 0.1133706 -0.1604807 0.3872220 0.1397227 -0.1542349 -0.2104415 -0.0980283 0.0286774 211 10 spleen weight Immunophenotyping Immunology spleen weight 1 1 Immunophenotyping Immunology
st 0.0032888 -0.0544512 0.0610288 0.0294597 -0.0054976 -0.0811810 0.0701858 0.0386147 -0.0034902 -0.0175917 0.0106113 0.0071948 212 11 st Electrocardiogram (ECG) Heart st 1 1 Electrocardiogram (ECG) Heart st 0.0032888 -0.0544512 0.0610288 0.0294597 -0.0054976 -0.0811810 0.0701858 0.0386147 -0.0034902 -0.0175917 0.0106113 0.0071948 212 11 st Electrocardiogram (ECG) Heart st 1 1 Electrocardiogram (ECG) Heart
stroke volume 0.0594276 -0.0782445 0.1970997 0.0702422 0.1574330 0.0091891 0.3056769 0.0756360 0.0937375 0.0775587 0.1099162 0.0082546 213 5 stroke volume Echo Heart stroke volume 1 1 Echo Heart stroke volume 0.0594276 -0.0782445 0.1970997 0.0702422 0.1574330 0.0091891 0.3056769 0.0756360 0.0937375 0.0775587 0.1099162 0.0082546 213 5 stroke volume Echo Heart stroke volume 1 1 Echo Heart
tibia length -0.1475403 -0.4396127 0.1445320 0.1490192 -0.1374401 -0.4261352 0.1512551 0.1472961 0.0095199 0.0059199 0.0131200 0.0018368 217 12 tibia length Heart Weight Morphology tibia length 1 1 Heart Weight Morphology tibia length -0.1475403 -0.4396127 0.1445320 0.1490192 -0.1374401 -0.4261352 0.1512551 0.1472961 0.0095199 0.0059199 0.0131200 0.0018368 217 12 tibia length Heart Weight Morphology tibia length 1 1 Heart Weight Morphology
total bilirubin 0.0605449 -0.0097669 0.1308567 0.0358740 0.0022671 -0.0859910 0.0905252 0.0450305 -0.0550333 -0.0979518 -0.0121148 0.0218976 218 16 total bilirubin Clinical Chemistry Physiology total bilirubin 1 1 Clinical Chemistry Physiology total bilirubin 0.0605449 -0.0097669 0.1308567 0.0358740 0.0022671 -0.0859910 0.0905252 0.0450305 -0.0550333 -0.0979518 -0.0121148 0.0218976 218 16 total bilirubin Clinical Chemistry Physiology total bilirubin 1 1 Clinical Chemistry Physiology
total cholesterol 0.0942595 -0.0751596 0.2636786 0.0864399 0.3142208 0.1125613 0.5158803 0.1028894 0.2027583 0.1750477 0.2304688 0.0141383 219 16 total cholesterol Clinical Chemistry Physiology total cholesterol 1 1 Clinical Chemistry Physiology total cholesterol 0.0942595 -0.0751596 0.2636786 0.0864399 0.3142208 0.1125613 0.5158803 0.1028894 0.2027583 0.1750477 0.2304688 0.0141383 219 16 total cholesterol Clinical Chemistry Physiology total cholesterol 1 1 Clinical Chemistry Physiology
total food intake -0.1192293 -0.2542902 0.0158316 0.0689099 -0.0964842 -0.2564912 0.0635228 0.0816377 0.0267691 -0.0233285 0.0768667 0.0255605 220 6 total food intake Indirect Calorimetry Metabolism total food intake 1 1 Indirect Calorimetry Metabolism total food intake -0.1192293 -0.2542902 0.0158316 0.0689099 -0.0964842 -0.2564912 0.0635228 0.0816377 0.0267691 -0.0233285 0.0768667 0.0255605 220 6 total food intake Indirect Calorimetry Metabolism total food intake 1 1 Indirect Calorimetry Metabolism
total protein -0.0422347 -0.0623878 -0.0220816 0.0102824 -0.0355909 -0.0619127 -0.0092692 0.0134297 0.0092660 -0.0008158 0.0193478 0.0051439 223 16 total protein Clinical Chemistry Physiology total protein 1 1 Clinical Chemistry Physiology total protein -0.0422347 -0.0623878 -0.0220816 0.0102824 -0.0355909 -0.0619127 -0.0092692 0.0134297 0.0092660 -0.0008158 0.0193478 0.0051439 223 16 total protein Clinical Chemistry Physiology total protein 1 1 Clinical Chemistry Physiology
total water intake -0.1457383 -0.2373165 -0.0541601 0.0467244 -0.2097443 -0.2681948 -0.1512937 0.0298223 -0.0654284 -0.1374220 0.0065653 0.0367321 224 3 total water intake Indirect Calorimetry Metabolism total water intake 1 1 Indirect Calorimetry Metabolism total water intake -0.1457383 -0.2373165 -0.0541601 0.0467244 -0.2097443 -0.2681948 -0.1512937 0.0298223 -0.0654284 -0.1374220 0.0065653 0.0367321 224 3 total water intake Indirect Calorimetry Metabolism total water intake 1 1 Indirect Calorimetry Metabolism
triglycerides -0.0320020 -0.1233659 0.0593619 0.0466151 0.3268957 0.2087111 0.4450803 0.0602994 0.3473552 0.2592006 0.4355098 0.0449777 226 16 triglycerides Clinical Chemistry Physiology triglycerides 1 1 Clinical Chemistry Physiology triglycerides -0.0320020 -0.1233659 0.0593619 0.0466151 0.3268957 0.2087111 0.4450803 0.0602994 0.3473552 0.2592006 0.4355098 0.0449777 226 16 triglycerides Clinical Chemistry Physiology triglycerides 1 1 Clinical Chemistry Physiology
urea (blood urea nitrogen - bun) -0.1405306 -0.2664120 -0.0146491 0.0642264 -0.0950040 -0.2507897 0.0607817 0.0794840 0.0403162 0.0051883 0.0754441 0.0179227 227 16 urea (blood urea nitrogen - bun) Clinical Chemistry Physiology urea (blood urea nitrogen - bun) 1 1 Clinical Chemistry Physiology urea (blood urea nitrogen - bun) -0.1405306 -0.2664120 -0.0146491 0.0642264 -0.0950040 -0.2507897 0.0607817 0.0794840 0.0403162 0.0051883 0.0754441 0.0179227 227 16 urea (blood urea nitrogen - bun) Clinical Chemistry Physiology urea (blood urea nitrogen - bun) 1 1 Clinical Chemistry Physiology
uric acid 0.0367062 -0.0660619 0.1394744 0.0524337 0.3626957 0.0914512 0.6339402 0.1383926 0.4472349 -0.0801891 0.9746588 0.2690988 228 3 uric acid Clinical Chemistry Physiology uric acid 1 1 Clinical Chemistry Physiology uric acid 0.0367062 -0.0660619 0.1394744 0.0524337 0.3626957 0.0914512 0.6339402 0.1383926 0.4472349 -0.0801891 0.9746588 0.2690988 228 3 uric acid Clinical Chemistry Physiology uric acid 1 1 Clinical Chemistry Physiology
white blood cell count -0.0907957 -0.1703063 -0.0112852 0.0405673 0.1168446 -0.0023934 0.2360826 0.0608368 0.1978876 0.1368305 0.2589447 0.0311521 229 16 white blood cell count Hematology Hematology white blood cell count 1 1 Hematology Hematology white blood cell count -0.0907957 -0.1703063 -0.0112852 0.0405673 0.1168446 -0.0023934 0.2360826 0.0608368 0.1978876 0.1368305 0.2589447 0.0311521 229 16 white blood cell count Hematology Hematology white blood cell count 1 1 Hematology Hematology
whole arena average speed -0.0156634 -0.0857564 0.0544296 0.0357624 -0.1140149 -0.1840029 -0.0440269 0.0357088 -0.0997437 -0.1519566 -0.0475307 0.0266397 230 13 whole arena average speed Open Field Behaviour whole arena average speed 1 1 Open Field Behaviour whole arena average speed -0.0156634 -0.0857564 0.0544296 0.0357624 -0.1140149 -0.1840029 -0.0440269 0.0357088 -0.0997437 -0.1519566 -0.0475307 0.0266397 230 13 whole arena average speed Open Field Behaviour whole arena average speed 1 1 Open Field Behaviour
whole arena resting time -0.0531307 -0.1011672 -0.0050941 0.0245089 -0.0593672 -0.1076067 -0.0111276 0.0246125 0.0045878 -0.0513396 0.0605152 0.0285349 232 13 whole arena resting time Open Field Behaviour whole arena resting time 1 1 Open Field Behaviour whole arena resting time -0.0531307 -0.1011672 -0.0050941 0.0245089 -0.0593672 -0.1076067 -0.0111276 0.0246125 0.0045878 -0.0513396 0.0605152 0.0285349 232 13 whole arena resting time Open Field Behaviour whole arena resting time 1 1 Open Field Behaviour

Clean-up and rename

metacombo <-metacombo[, c(1, 21:23, 2:13)] 
names(metacombo)[3] <- "procedure" 
names(metacombo)[4] <- "GroupingTerm" 

# Quick pre-check before doing plots 

compare <- metacombo %>%
  group_by(GroupingTerm) %>%
  dplyr::summarize(MeanCVR = mean(lnCVR),MeanVR = mean(lnVR), MeanRR = mean(lnRR) )

compare
## # A tibble: 9 x 4
##   GroupingTerm   MeanCVR   MeanVR   MeanRR
##   <fct>            <dbl>    <dbl>    <dbl>
## 1 Behaviour     0.000871 -0.00727 -0.00869
## 2 Eye          -0.152    -0.146    0.00656
## 3 Hearing       0.0143   -0.00893 -0.0145 
## 4 Heart         0.0225   -0.0126  -0.0312 
## 5 Hematology    0.0295    0.106    0.0665 
## 6 Immunology   -0.0723   -0.107   -0.0528 
## 7 Metabolism   -0.0503    0.0931   0.161  
## 8 Morphology    0.0730    0.143    0.0684 
## 9 Physiology    0.0236    0.0480   0.0227
# SHINY APP # Now that we have a corrected "results" table with each of the meta-analytic means for all effect sizes of interest, we can use this table as part of the Shiny App, which will then be able to back calculate the percentage differences between males and females for mean, variance and coefficient of variance. We'll export and use this in the Shiny App. **Note that I have not dealt with convergence issues in some of these models, and so, this will need to be done down the road**

## Note Susi 31/7/2019: This has been cleaned up already
#FILE TO USE: METACOMBO 
  ### note: to use

#trait_meta_results <- write.csv(metacombo, file = "export/trait_meta_results.csv")

Meta-analysis, Phase 3

Perform meta-analyses (3 for each of the 9 grouping terms: lnCVR, lnVR, lnRR)

This is the full result dataset

kable(cbind (metacombo,metacombo)) %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "200px")
parameter_group counts procedure GroupingTerm lnCVR lnCVR_lower lnCVR_upper lnCVR_se lnVR lnVR_lower lnVR_upper lnVR_se lnRR lnRR_lower lnRR_upper lnRR_se parameter_group counts procedure GroupingTerm lnCVR lnCVR_lower lnCVR_upper lnCVR_se lnVR lnVR_lower lnVR_upper lnVR_se lnRR lnRR_lower lnRR_upper lnRR_se
pre-pulse inhibition 5 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour 0.0232963 -0.0802563 0.1268488 0.0370507 0.0091028 -0.0364640 0.0546695 0.0143431 -0.0052156 -0.0427126 0.0322815 0.0128092 pre-pulse inhibition 5 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour 0.0232963 -0.0802563 0.1268488 0.0370507 0.0091028 -0.0364640 0.0546695 0.0143431 -0.0052156 -0.0427126 0.0322815 0.0128092
B cells 4 Immunophenotyping Immunology -0.0938959 -0.2500020 0.0622103 0.0426972 -0.0995337 -0.2068001 0.0077328 0.0250132 -0.0026281 -0.1298230 0.1245668 0.0393018 B cells 4 Immunophenotyping Immunology -0.0938959 -0.2500020 0.0622103 0.0426972 -0.0995337 -0.2068001 0.0077328 0.0250132 -0.0026281 -0.1298230 0.1245668 0.0393018
cd4 nkt 6 Immunophenotyping Immunology -0.0287688 -0.0566987 -0.0008389 0.0101634 -0.2018746 -0.3102294 -0.0935198 0.0331161 -0.2344450 -0.4005266 -0.0683635 0.0633501 cd4 nkt 6 Immunophenotyping Immunology -0.0287688 -0.0566987 -0.0008389 0.0101634 -0.2018746 -0.3102294 -0.0935198 0.0331161 -0.2344450 -0.4005266 -0.0683635 0.0633501
cd4 t 7 Immunophenotyping Immunology -0.1507387 -0.2427976 -0.0586798 0.0360690 -0.1699213 -0.2629450 -0.0768975 0.0348324 -0.0031242 -0.0411564 0.0349081 0.0148989 cd4 t 7 Immunophenotyping Immunology -0.1507387 -0.2427976 -0.0586798 0.0360690 -0.1699213 -0.2629450 -0.0768975 0.0348324 -0.0031242 -0.0411564 0.0349081 0.0148989
cd8 nkt 6 Immunophenotyping Immunology -0.0424402 -0.0782046 -0.0066759 0.0119223 -0.0300442 -0.1823594 0.1222710 0.0533765 0.0035372 -0.0573749 0.0644494 0.0205272 cd8 nkt 6 Immunophenotyping Immunology -0.0424402 -0.0782046 -0.0066759 0.0119223 -0.0300442 -0.1823594 0.1222710 0.0533765 0.0035372 -0.0573749 0.0644494 0.0205272
cd8 t 7 Immunophenotyping Immunology -0.1223681 -0.2179976 -0.0267387 0.0358727 -0.1581698 -0.2342579 -0.0820816 0.0270229 -0.0415806 -0.0510391 -0.0321221 0.0023119 cd8 t 7 Immunophenotyping Immunology -0.1223681 -0.2179976 -0.0267387 0.0358727 -0.1581698 -0.2342579 -0.0820816 0.0270229 -0.0415806 -0.0510391 -0.0321221 0.0023119
cdcs 2 Immunophenotyping Immunology -0.0362947 -0.3588637 0.2862742 0.0253867 0.1080248 -0.0565718 0.2726213 0.0129540 0.1642541 -0.1701520 0.4986601 0.0263183 cdcs 2 Immunophenotyping Immunology -0.0362947 -0.3588637 0.2862742 0.0253867 0.1080248 -0.0565718 0.2726213 0.0129540 0.1642541 -0.1701520 0.4986601 0.0263183
dn nkt 6 Immunophenotyping Immunology -0.0619371 -0.1359380 0.0120637 0.0257746 -0.1572129 -0.2814342 -0.0329915 0.0447163 -0.1727105 -0.2906356 -0.0547854 0.0441034 dn nkt 6 Immunophenotyping Immunology -0.0619371 -0.1359380 0.0120637 0.0257746 -0.1572129 -0.2814342 -0.0329915 0.0447163 -0.1727105 -0.2906356 -0.0547854 0.0441034
dn t 7 Immunophenotyping Immunology -0.0796127 -0.1844481 0.0252227 0.0420063 -0.2421038 -0.3431678 -0.1410397 0.0406314 -0.2298147 -0.2519708 -0.2076586 0.0072373 dn t 7 Immunophenotyping Immunology -0.0796127 -0.1844481 0.0252227 0.0420063 -0.2421038 -0.3431678 -0.1410397 0.0406314 -0.2298147 -0.2519708 -0.2076586 0.0072373
eosinophils 3 Hematology Hematology -0.0662225 -0.2806631 0.1482181 0.0325859 -0.0154112 -0.4051652 0.3743427 0.0865366 -0.0042422 -0.2409206 0.2324362 0.0508093 eosinophils 3 Hematology Hematology -0.0662225 -0.2806631 0.1482181 0.0325859 -0.0154112 -0.4051652 0.3743427 0.0865366 -0.0042422 -0.2409206 0.2324362 0.0508093
follicular b cells 2 Immunophenotyping Immunology -0.1160077 -0.7256692 0.4936538 0.0479814 -0.1050194 -0.6946364 0.4845977 0.0464039 0.0052427 -0.1872381 0.1977236 0.0151486 follicular b cells 2 Immunophenotyping Immunology -0.1160077 -0.7256692 0.4936538 0.0479814 -0.1050194 -0.6946364 0.4845977 0.0464039 0.0052427 -0.1872381 0.1977236 0.0151486
luc 2 Hematology Hematology 0.0180436 -0.2038464 0.2399336 0.0174631 0.2657035 -1.2251358 1.7565428 0.1173316 0.2215497 -1.4136389 1.8567382 0.1286921 luc 2 Hematology Hematology 0.0180436 -0.2038464 0.2399336 0.0174631 0.2657035 -1.2251358 1.7565428 0.1173316 0.2215497 -1.4136389 1.8567382 0.1286921
lymphocytes 2 Hematology Hematology 0.0805230 -2.2618128 2.4228588 0.1843458 0.1550159 -1.0892706 1.3993024 0.0979275 0.0602144 -1.0131287 1.1335576 0.0844739 lymphocytes 2 Hematology Hematology 0.0805230 -2.2618128 2.4228588 0.1843458 0.1550159 -1.0892706 1.3993024 0.0979275 0.0602144 -1.0131287 1.1335576 0.0844739
monocytes 3 Hematology Hematology -0.0214677 -0.2033706 0.1604352 0.0420605 0.0784876 -0.1811005 0.3380757 0.0585593 0.1025193 -0.1483375 0.3533762 0.0571438 monocytes 3 Hematology Hematology -0.0214677 -0.2033706 0.1604352 0.0420605 0.0784876 -0.1811005 0.3380757 0.0585593 0.1025193 -0.1483375 0.3533762 0.0571438
neutrophils 3 Hematology Hematology 0.2587446 0.0130803 0.5044089 0.0557516 0.3799805 -0.2060446 0.9660057 0.1317980 0.1319372 -0.2669324 0.5308068 0.0924336 neutrophils 3 Hematology Hematology 0.2587446 0.0130803 0.5044089 0.0557516 0.3799805 -0.2060446 0.9660057 0.1317980 0.1319372 -0.2669324 0.5308068 0.0924336
nk cells 6 Immunophenotyping Immunology -0.0414772 -0.0960406 0.0130862 0.0200411 0.0156533 -0.0703789 0.1016856 0.0315487 0.0471757 -0.0162213 0.1105728 0.0231831 nk cells 6 Immunophenotyping Immunology -0.0414772 -0.0960406 0.0130862 0.0200411 0.0156533 -0.0703789 0.1016856 0.0315487 0.0471757 -0.0162213 0.1105728 0.0231831
nkt cells 4 Immunophenotyping Immunology 0.0033757 -0.1069890 0.1137404 0.0294661 -0.2458705 -0.4452333 -0.0465077 0.0426738 -0.1823355 -0.3233946 -0.0412763 0.0314580 nkt cells 4 Immunophenotyping Immunology 0.0033757 -0.1069890 0.1137404 0.0294661 -0.2458705 -0.4452333 -0.0465077 0.0426738 -0.1823355 -0.3233946 -0.0412763 0.0314580
percentage of live gated events 2 Immunophenotyping Immunology -0.0934933 -0.3037340 0.1167473 0.0165463 -0.0412606 -0.1414443 0.0589231 0.0078846 0.0500941 0.0081191 0.0920690 0.0033035 percentage of live gated events 2 Immunophenotyping Immunology -0.0934933 -0.3037340 0.1167473 0.0165463 -0.0412606 -0.1414443 0.0589231 0.0078846 0.0500941 0.0081191 0.0920690 0.0033035
response amplitude 10 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour 0.0333147 -0.0127585 0.0793879 0.0202947 0.2549274 0.1969787 0.3128761 0.0255003 0.2016062 0.1108136 0.2923987 0.0401164 response amplitude 10 Acoustic Startle and Pre-pulse Inhibition (PPI) Behaviour 0.0333147 -0.0127585 0.0793879 0.0202947 0.2549274 0.1969787 0.3128761 0.0255003 0.2016062 0.1108136 0.2923987 0.0401164
t cells 3 Immunophenotyping Immunology -0.1338701 -0.2750284 0.0072883 0.0326594 -0.1240786 -0.4120104 0.1638531 0.0668611 -0.0005749 -0.1663201 0.1651702 0.0374233 t cells 3 Immunophenotyping Immunology -0.1338701 -0.2750284 0.0072883 0.0326594 -0.1240786 -0.4120104 0.1638531 0.0668611 -0.0005749 -0.1663201 0.1651702 0.0374233
12khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0538655 -0.0056830 0.1134139 0.0303824 0.0869649 0.0065802 0.1673497 0.0410134 0.0024851 -0.0214504 0.0264205 0.0122122 12khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0538655 -0.0056830 0.1134139 0.0303824 0.0869649 0.0065802 0.1673497 0.0410134 0.0024851 -0.0214504 0.0264205 0.0122122
18khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0238241 -0.0331809 0.0808292 0.0290848 0.0250266 -0.0488450 0.0988982 0.0376903 -0.0200763 -0.0431508 0.0029982 0.0117729 18khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0238241 -0.0331809 0.0808292 0.0290848 0.0250266 -0.0488450 0.0988982 0.0376903 -0.0200763 -0.0431508 0.0029982 0.0117729
24khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0518127 -0.0148242 0.1184497 0.0339991 -0.0891510 -0.3321998 0.1538977 0.1240067 -0.0224536 -0.0444163 -0.0004910 0.0112057 24khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0518127 -0.0148242 0.1184497 0.0339991 -0.0891510 -0.3321998 0.1538977 0.1240067 -0.0224536 -0.0444163 -0.0004910 0.0112057
30khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0170933 -0.0533187 0.0875053 0.0359252 -0.0344797 -0.1017901 0.0328306 0.0343426 -0.0497874 -0.0748197 -0.0247550 0.0127718 30khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing 0.0170933 -0.0533187 0.0875053 0.0359252 -0.0344797 -0.1017901 0.0328306 0.0343426 -0.0497874 -0.0748197 -0.0247550 0.0127718
6khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing -0.0077678 -0.0418582 0.0263226 0.0173934 0.0141682 -0.0189973 0.0473337 0.0169215 0.0184043 0.0056897 0.0311189 0.0064872 6khz-evoked abr threshold 1 Auditory Brain Stem Response Hearing -0.0077678 -0.0418582 0.0263226 0.0173934 0.0141682 -0.0189973 0.0473337 0.0169215 0.0184043 0.0056897 0.0311189 0.0064872
alanine aminotransferase 1 Clinical Chemistry Physiology -0.0684217 -0.1895020 0.0526586 0.0617768 0.0585179 -0.1322507 0.2492866 0.0973327 0.1069442 0.0319934 0.1818950 0.0382409 alanine aminotransferase 1 Clinical Chemistry Physiology -0.0684217 -0.1895020 0.0526586 0.0617768 0.0585179 -0.1322507 0.2492866 0.0973327 0.1069442 0.0319934 0.1818950 0.0382409
albumin 1 Clinical Chemistry Physiology 0.1133080 0.0451475 0.1814685 0.0347764 0.0559995 -0.0080678 0.1200668 0.0326880 -0.0567840 -0.0732083 -0.0403597 0.0083799 albumin 1 Clinical Chemistry Physiology 0.1133080 0.0451475 0.1814685 0.0347764 0.0559995 -0.0080678 0.1200668 0.0326880 -0.0567840 -0.0732083 -0.0403597 0.0083799
alkaline phosphatase 1 Clinical Chemistry Physiology 0.1043649 0.0451585 0.1635713 0.0302079 -0.3112471 -0.3980164 -0.2244778 0.0442709 -0.4216032 -0.4694832 -0.3737231 0.0244290 alkaline phosphatase 1 Clinical Chemistry Physiology 0.1043649 0.0451585 0.1635713 0.0302079 -0.3112471 -0.3980164 -0.2244778 0.0442709 -0.4216032 -0.4694832 -0.3737231 0.0244290
alpha-amylase 1 Clinical Chemistry Physiology 0.0383407 -0.0423419 0.1190232 0.0411653 0.2795566 0.1615777 0.3975355 0.0601944 0.2246987 0.1793151 0.2700822 0.0231553 alpha-amylase 1 Clinical Chemistry Physiology 0.0383407 -0.0423419 0.1190232 0.0411653 0.2795566 0.1615777 0.3975355 0.0601944 0.2246987 0.1793151 0.2700822 0.0231553
area under glucose response curve 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism -0.1531723 -0.2210551 -0.0852895 0.0346347 0.2748396 0.1950895 0.3545898 0.0406896 0.4357738 0.3655882 0.5059595 0.0358097 area under glucose response curve 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism -0.1531723 -0.2210551 -0.0852895 0.0346347 0.2748396 0.1950895 0.3545898 0.0406896 0.4357738 0.3655882 0.5059595 0.0358097
aspartate aminotransferase 1 Clinical Chemistry Physiology 0.0119165 -0.1228287 0.1466617 0.0687488 -0.0566968 -0.2457779 0.1323843 0.0964717 -0.0585577 -0.1331777 0.0160624 0.0380722 aspartate aminotransferase 1 Clinical Chemistry Physiology 0.0119165 -0.1228287 0.1466617 0.0687488 -0.0566968 -0.2457779 0.1323843 0.0964717 -0.0585577 -0.1331777 0.0160624 0.0380722
basophil cell count 1 Hematology Hematology -0.0917931 -0.2022487 0.0186624 0.0563559 0.2031265 -0.0131549 0.4194079 0.1103497 0.2675772 0.0643028 0.4708516 0.1037133 basophil cell count 1 Hematology Hematology -0.0917931 -0.2022487 0.0186624 0.0563559 0.2031265 -0.0131549 0.4194079 0.1103497 0.2675772 0.0643028 0.4708516 0.1037133
basophil differential count 1 Hematology Hematology -0.0934739 -0.1787512 -0.0081966 0.0435096 -0.0639511 -0.2828066 0.1549044 0.1116630 -0.0156339 -0.1102310 0.0789633 0.0482647 basophil differential count 1 Hematology Hematology -0.0934739 -0.1787512 -0.0081966 0.0435096 -0.0639511 -0.2828066 0.1549044 0.1116630 -0.0156339 -0.1102310 0.0789633 0.0482647
bmc/body weight 1 Body Composition (DEXA lean/fat) Morphology 0.1314998 0.0329846 0.2300151 0.0502638 -0.0448684 -0.1340146 0.0442777 0.0454836 -0.1722378 -0.2207030 -0.1237726 0.0247276 bmc/body weight 1 Body Composition (DEXA lean/fat) Morphology 0.1314998 0.0329846 0.2300151 0.0502638 -0.0448684 -0.1340146 0.0442777 0.0454836 -0.1722378 -0.2207030 -0.1237726 0.0247276
body length 1 Body Composition (DEXA lean/fat) Morphology -0.0347988 -0.0824528 0.0128552 0.0243137 -0.0059677 -0.0526221 0.0406866 0.0238037 0.0282722 0.0233254 0.0332189 0.0025239 body length 1 Body Composition (DEXA lean/fat) Morphology -0.0347988 -0.0824528 0.0128552 0.0243137 -0.0059677 -0.0526221 0.0406866 0.0238037 0.0282722 0.0233254 0.0332189 0.0025239
body temp 1 Echo Heart -0.0325368 -0.1066429 0.0415693 0.0378099 -0.0303742 -0.1044537 0.0437054 0.0377964 0.0018532 -0.0005002 0.0042066 0.0012008 body temp 1 Echo Heart -0.0325368 -0.1066429 0.0415693 0.0378099 -0.0303742 -0.1044537 0.0437054 0.0377964 0.0018532 -0.0005002 0.0042066 0.0012008
body weight 1 Body Weight Morphology 0.0245675 -0.0420402 0.0911752 0.0339841 0.2335793 0.1694979 0.2976607 0.0326952 0.2096770 0.1938727 0.2254813 0.0080636 body weight 1 Body Weight Morphology 0.0245675 -0.0420402 0.0911752 0.0339841 0.2335793 0.1694979 0.2976607 0.0326952 0.2096770 0.1938727 0.2254813 0.0080636
body weight after experiment 1 Indirect Calorimetry Metabolism 0.0853708 0.0299665 0.1407751 0.0282680 0.2849370 0.2328875 0.3369866 0.0265564 0.2030973 0.1864076 0.2197871 0.0085153 body weight after experiment 1 Indirect Calorimetry Metabolism 0.0853708 0.0299665 0.1407751 0.0282680 0.2849370 0.2328875 0.3369866 0.0265564 0.2030973 0.1864076 0.2197871 0.0085153
body weight before experiment 1 Indirect Calorimetry Metabolism 0.1053511 0.0412461 0.1694562 0.0327073 0.3038998 0.2435428 0.3642568 0.0307949 0.2008638 0.1816362 0.2200914 0.0098102 body weight before experiment 1 Indirect Calorimetry Metabolism 0.1053511 0.0412461 0.1694562 0.0327073 0.3038998 0.2435428 0.3642568 0.0307949 0.2008638 0.1816362 0.2200914 0.0098102
bone area 1 Body Composition (DEXA lean/fat) Morphology 0.0981587 0.0272824 0.1690349 0.0361620 0.1286546 0.0533659 0.2039432 0.0384133 0.0315241 0.0003806 0.0626676 0.0158898 bone area 1 Body Composition (DEXA lean/fat) Morphology 0.0981587 0.0272824 0.1690349 0.0361620 0.1286546 0.0533659 0.2039432 0.0384133 0.0315241 0.0003806 0.0626676 0.0158898
bone mineral content (excluding skull) 1 Body Composition (DEXA lean/fat) Morphology 0.1709230 0.0625642 0.2792818 0.0552861 0.2091372 0.1015600 0.3167143 0.0548873 0.0372537 -0.0130828 0.0875902 0.0256824 bone mineral content (excluding skull) 1 Body Composition (DEXA lean/fat) Morphology 0.1709230 0.0625642 0.2792818 0.0552861 0.2091372 0.1015600 0.3167143 0.0548873 0.0372537 -0.0130828 0.0875902 0.0256824
bone mineral density (excluding skull) 1 Body Composition (DEXA lean/fat) Morphology 0.0542638 -0.0881612 0.1966887 0.0726671 0.0492830 -0.1087868 0.2073528 0.0806494 0.0012286 -0.0187942 0.0212514 0.0102159 bone mineral density (excluding skull) 1 Body Composition (DEXA lean/fat) Morphology 0.0542638 -0.0881612 0.1966887 0.0726671 0.0492830 -0.1087868 0.2073528 0.0806494 0.0012286 -0.0187942 0.0212514 0.0102159
calcium 1 Clinical Chemistry Physiology 0.0097946 -0.0464600 0.0660492 0.0287018 0.0135683 -0.0424600 0.0695966 0.0285864 0.0036564 -0.0000609 0.0073737 0.0018966 calcium 1 Clinical Chemistry Physiology 0.0097946 -0.0464600 0.0660492 0.0287018 0.0135683 -0.0424600 0.0695966 0.0285864 0.0036564 -0.0000609 0.0073737 0.0018966
cardiac output 1 Echo Heart 0.0133816 -0.0797535 0.1065166 0.0475188 0.1017991 0.0206287 0.1829694 0.0414142 0.0934439 0.0580233 0.1288645 0.0180721 cardiac output 1 Echo Heart 0.0133816 -0.0797535 0.1065166 0.0475188 0.1017991 0.0206287 0.1829694 0.0414142 0.0934439 0.0580233 0.1288645 0.0180721
center average speed 1 Open Field Behaviour 0.0167300 -0.0404735 0.0739335 0.0291860 -0.0588515 -0.1004209 -0.0172820 0.0212093 -0.0724619 -0.1149622 -0.0299616 0.0216842 center average speed 1 Open Field Behaviour 0.0167300 -0.0404735 0.0739335 0.0291860 -0.0588515 -0.1004209 -0.0172820 0.0212093 -0.0724619 -0.1149622 -0.0299616 0.0216842
center distance travelled 1 Open Field Behaviour -0.0162603 -0.0733243 0.0408038 0.0291149 -0.1060637 -0.2023343 -0.0097930 0.0491186 -0.0940204 -0.1945774 0.0065366 0.0513055 center distance travelled 1 Open Field Behaviour -0.0162603 -0.0733243 0.0408038 0.0291149 -0.1060637 -0.2023343 -0.0097930 0.0491186 -0.0940204 -0.1945774 0.0065366 0.0513055
center permanence time 1 Open Field Behaviour -0.0253715 -0.0826435 0.0319004 0.0292209 -0.0255734 -0.1014389 0.0502922 0.0387076 -0.0035151 -0.0902886 0.0832585 0.0442730 center permanence time 1 Open Field Behaviour -0.0253715 -0.0826435 0.0319004 0.0292209 -0.0255734 -0.1014389 0.0502922 0.0387076 -0.0035151 -0.0902886 0.0832585 0.0442730
center resting time 1 Open Field Behaviour 0.0244492 -0.0737922 0.1226906 0.0501241 -0.0228690 -0.1548339 0.1090960 0.0673303 -0.0630751 -0.2215457 0.0953955 0.0808538 center resting time 1 Open Field Behaviour 0.0244492 -0.0737922 0.1226906 0.0501241 -0.0228690 -0.1548339 0.1090960 0.0673303 -0.0630751 -0.2215457 0.0953955 0.0808538
chloride 1 Clinical Chemistry Physiology 0.0321555 -0.1270972 0.1914083 0.0812529 0.0241491 -0.1438502 0.1921485 0.0857155 -0.0127047 -0.0177349 -0.0076745 0.0025665 chloride 1 Clinical Chemistry Physiology 0.0321555 -0.1270972 0.1914083 0.0812529 0.0241491 -0.1438502 0.1921485 0.0857155 -0.0127047 -0.0177349 -0.0076745 0.0025665
click-evoked abr threshold 1 Auditory Brain Stem Response Hearing -0.0529450 -0.1534816 0.0475915 0.0512951 -0.0561198 -0.1827679 0.0705282 0.0646176 -0.0154221 -0.0577200 0.0268757 0.0215809 click-evoked abr threshold 1 Auditory Brain Stem Response Hearing -0.0529450 -0.1534816 0.0475915 0.0512951 -0.0561198 -0.1827679 0.0705282 0.0646176 -0.0154221 -0.0577200 0.0268757 0.0215809
creatine kinase 1 Clinical Chemistry Physiology 0.0241232 -0.1071457 0.1553920 0.0669751 -0.1318792 -0.3968974 0.1331390 0.1352159 -0.1344413 -0.3838303 0.1149476 0.1272416 creatine kinase 1 Clinical Chemistry Physiology 0.0241232 -0.1071457 0.1553920 0.0669751 -0.1318792 -0.3968974 0.1331390 0.1352159 -0.1344413 -0.3838303 0.1149476 0.1272416
creatinine 1 Clinical Chemistry Physiology 0.0352315 -0.0229205 0.0933835 0.0296699 0.1066373 -0.2200831 0.4333578 0.1666972 -0.0844078 -0.1320251 -0.0367905 0.0242950 creatinine 1 Clinical Chemistry Physiology 0.0352315 -0.0229205 0.0933835 0.0296699 0.1066373 -0.2200831 0.4333578 0.1666972 -0.0844078 -0.1320251 -0.0367905 0.0242950
cv 1 Electrocardiogram (ECG) Heart 0.1874544 0.0716631 0.3032457 0.0590783 -0.0895722 -0.2484833 0.0693388 0.0810786 -0.2401301 -0.3410322 -0.1392280 0.0514816 cv 1 Electrocardiogram (ECG) Heart 0.1874544 0.0716631 0.3032457 0.0590783 -0.0895722 -0.2484833 0.0693388 0.0810786 -0.2401301 -0.3410322 -0.1392280 0.0514816
distance travelled - total 1 Open Field Behaviour -0.0187819 -0.0858957 0.0483318 0.0342423 -0.1272582 -0.1997426 -0.0547738 0.0369825 -0.1121373 -0.1816322 -0.0426424 0.0354572 distance travelled - total 1 Open Field Behaviour -0.0187819 -0.0858957 0.0483318 0.0342423 -0.1272582 -0.1997426 -0.0547738 0.0369825 -0.1121373 -0.1816322 -0.0426424 0.0354572
ejection fraction 1 Echo Heart -0.0300111 -0.1345066 0.0744844 0.0533150 -0.0525735 -0.1483174 0.0431705 0.0488499 -0.0284086 -0.0492579 -0.0075592 0.0106376 ejection fraction 1 Echo Heart -0.0300111 -0.1345066 0.0744844 0.0533150 -0.0525735 -0.1483174 0.0431705 0.0488499 -0.0284086 -0.0492579 -0.0075592 0.0106376
end-diastolic diameter 1 Echo Heart 0.1120972 0.0431489 0.1810454 0.0351783 0.1743929 0.0875252 0.2612607 0.0443211 0.0600907 0.0354923 0.0846891 0.0125504 end-diastolic diameter 1 Echo Heart 0.1120972 0.0431489 0.1810454 0.0351783 0.1743929 0.0875252 0.2612607 0.0443211 0.0600907 0.0354923 0.0846891 0.0125504
end-systolic diameter 1 Echo Heart -0.0084176 -0.0780811 0.0612459 0.0355433 0.0668966 -0.0016692 0.1354624 0.0349832 0.0763195 0.0451136 0.1075254 0.0159217 end-systolic diameter 1 Echo Heart -0.0084176 -0.0780811 0.0612459 0.0355433 0.0668966 -0.0016692 0.1354624 0.0349832 0.0763195 0.0451136 0.1075254 0.0159217
fasted blood glucose concentration 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism -0.0177245 -0.1256855 0.0902366 0.0550832 0.0702824 -0.0302439 0.1708087 0.0512899 0.0868420 0.0493007 0.1243832 0.0191541 fasted blood glucose concentration 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism -0.0177245 -0.1256855 0.0902366 0.0550832 0.0702824 -0.0302439 0.1708087 0.0512899 0.0868420 0.0493007 0.1243832 0.0191541
fat mass 1 Body Composition (DEXA lean/fat) Morphology 0.0408799 -0.0430149 0.1247746 0.0428042 0.3714313 0.2698790 0.4729837 0.0518134 0.3282080 0.2669032 0.3895129 0.0312786 fat mass 1 Body Composition (DEXA lean/fat) Morphology 0.0408799 -0.0430149 0.1247746 0.0428042 0.3714313 0.2698790 0.4729837 0.0518134 0.3282080 0.2669032 0.3895129 0.0312786
fat/body weight 1 Body Composition (DEXA lean/fat) Morphology 0.0777327 -0.0119735 0.1674390 0.0457693 0.2020776 0.1083557 0.2957996 0.0478182 0.1235292 0.0638629 0.1831955 0.0304425 fat/body weight 1 Body Composition (DEXA lean/fat) Morphology 0.0777327 -0.0119735 0.1674390 0.0457693 0.2020776 0.1083557 0.2957996 0.0478182 0.1235292 0.0638629 0.1831955 0.0304425
forelimb and hindlimb grip strength measurement mean 1 Grip Strength Morphology 0.0578158 0.0039998 0.1116318 0.0274577 0.1145986 0.0530521 0.1761451 0.0314018 0.0541888 0.0294838 0.0788938 0.0126048 forelimb and hindlimb grip strength measurement mean 1 Grip Strength Morphology 0.0578158 0.0039998 0.1116318 0.0274577 0.1145986 0.0530521 0.1761451 0.0314018 0.0541888 0.0294838 0.0788938 0.0126048
forelimb grip strength measurement mean 1 Grip Strength Morphology 0.0265051 -0.0187240 0.0717341 0.0230765 0.0995076 0.0539740 0.1450413 0.0232319 0.0697061 0.0438625 0.0955496 0.0131857 forelimb grip strength measurement mean 1 Grip Strength Morphology 0.0265051 -0.0187240 0.0717341 0.0230765 0.0995076 0.0539740 0.1450413 0.0232319 0.0697061 0.0438625 0.0955496 0.0131857
fractional shortening 1 Echo Heart -0.0148852 -0.1161666 0.0863961 0.0516751 -0.0575326 -0.1558559 0.0407907 0.0501659 -0.0413498 -0.0567105 -0.0259891 0.0078372 fractional shortening 1 Echo Heart -0.0148852 -0.1161666 0.0863961 0.0516751 -0.0575326 -0.1558559 0.0407907 0.0501659 -0.0413498 -0.0567105 -0.0259891 0.0078372
free fatty acids 1 Clinical Chemistry Physiology 0.0281576 -0.1002531 0.1565683 0.0655169 0.0554109 -0.0736861 0.1845079 0.0658670 0.0193783 -0.0093700 0.0481266 0.0146678 free fatty acids 1 Clinical Chemistry Physiology 0.0281576 -0.1002531 0.1565683 0.0655169 0.0554109 -0.0736861 0.1845079 0.0658670 0.0193783 -0.0093700 0.0481266 0.0146678
fructosamine 1 Clinical Chemistry Physiology -0.0397864 -0.1198801 0.0403073 0.0408649 -0.0678231 -0.1513538 0.0157075 0.0426184 -0.0283579 -0.0692447 0.0125289 0.0208610 fructosamine 1 Clinical Chemistry Physiology -0.0397864 -0.1198801 0.0403073 0.0408649 -0.0678231 -0.1513538 0.0157075 0.0426184 -0.0283579 -0.0692447 0.0125289 0.0208610
glucose 1 Clinical Chemistry Physiology 0.0692601 0.0184025 0.1201176 0.0259482 0.1279473 0.0423001 0.2135946 0.0436984 0.0650887 0.0218496 0.1083279 0.0220612 glucose 1 Clinical Chemistry Physiology 0.0692601 0.0184025 0.1201176 0.0259482 0.1279473 0.0423001 0.2135946 0.0436984 0.0650887 0.0218496 0.1083279 0.0220612
hdl-cholesterol 1 Clinical Chemistry Physiology -0.0650177 -0.1255786 -0.0044568 0.0308990 0.1724354 0.0701062 0.2747646 0.0522097 0.2606961 0.2180421 0.3033501 0.0217626 hdl-cholesterol 1 Clinical Chemistry Physiology -0.0650177 -0.1255786 -0.0044568 0.0308990 0.1724354 0.0701062 0.2747646 0.0522097 0.2606961 0.2180421 0.3033501 0.0217626
heart weight 1 Heart Weight Morphology 0.1766832 0.0672843 0.2860820 0.0558168 0.3651806 0.2169840 0.5133772 0.0756119 0.1737615 0.1409037 0.2066193 0.0167645 heart weight 1 Heart Weight Morphology 0.1766832 0.0672843 0.2860820 0.0558168 0.3651806 0.2169840 0.5133772 0.0756119 0.1737615 0.1409037 0.2066193 0.0167645
heart weight normalised against body weight 1 Heart Weight Morphology 0.0794303 -0.0060591 0.1649198 0.0436179 0.0355574 -0.0973272 0.1684419 0.0677995 -0.0495578 -0.0835809 -0.0155346 0.0173591 heart weight normalised against body weight 1 Heart Weight Morphology 0.0794303 -0.0060591 0.1649198 0.0436179 0.0355574 -0.0973272 0.1684419 0.0677995 -0.0495578 -0.0835809 -0.0155346 0.0173591
hematocrit 1 Hematology Hematology 0.0566356 -0.0516862 0.1649575 0.0552673 0.0737071 -0.0328632 0.1802774 0.0543736 0.0173967 0.0035179 0.0312754 0.0070811 hematocrit 1 Hematology Hematology 0.0566356 -0.0516862 0.1649575 0.0552673 0.0737071 -0.0328632 0.1802774 0.0543736 0.0173967 0.0035179 0.0312754 0.0070811
hemoglobin 1 Hematology Hematology 0.0867000 0.0269936 0.1464064 0.0304630 0.0867345 0.0194022 0.1540668 0.0343538 0.0051992 -0.0080216 0.0184199 0.0067454 hemoglobin 1 Hematology Hematology 0.0867000 0.0269936 0.1464064 0.0304630 0.0867345 0.0194022 0.1540668 0.0343538 0.0051992 -0.0080216 0.0184199 0.0067454
hr 1 Electrocardiogram (ECG) Heart -0.0634490 -0.1734699 0.0465718 0.0561341 -0.0140315 -0.1488474 0.1207843 0.0687849 0.0406617 -0.0139214 0.0952448 0.0278490 hr 1 Electrocardiogram (ECG) Heart -0.0634490 -0.1734699 0.0465718 0.0561341 -0.0140315 -0.1488474 0.1207843 0.0687849 0.0406617 -0.0139214 0.0952448 0.0278490
hrv 1 Electrocardiogram (ECG) Heart 0.1722593 0.1094294 0.2350892 0.0320567 -0.0813225 -0.2125462 0.0499011 0.0669521 -0.2504990 -0.3657436 -0.1352545 0.0587993 hrv 1 Electrocardiogram (ECG) Heart 0.1722593 0.1094294 0.2350892 0.0320567 -0.0813225 -0.2125462 0.0499011 0.0669521 -0.2504990 -0.3657436 -0.1352545 0.0587993
initial response to glucose challenge 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism -0.0968821 -0.1503780 -0.0433861 0.0272943 0.0429971 0.0141807 0.0718136 0.0147026 0.1183626 0.0853242 0.1514009 0.0168566 initial response to glucose challenge 1 Intraperitoneal glucose tolerance test (IPGTT) Metabolism -0.0968821 -0.1503780 -0.0433861 0.0272943 0.0429971 0.0141807 0.0718136 0.0147026 0.1183626 0.0853242 0.1514009 0.0168566
insulin 1 Insulin Blood Level Metabolism -0.0993292 -0.3721975 0.1735391 0.1392211 0.1774003 -0.1938091 0.5486096 0.1893960 0.4445455 0.0944498 0.7946412 0.1786236 insulin 1 Insulin Blood Level Metabolism -0.0993292 -0.3721975 0.1735391 0.1392211 0.1774003 -0.1938091 0.5486096 0.1893960 0.4445455 0.0944498 0.7946412 0.1786236
iron 1 Clinical Chemistry Physiology -0.0974214 -0.2141737 0.0193310 0.0595686 -0.2534898 -0.3963648 -0.1106147 0.0728968 -0.1527977 -0.1930307 -0.1125646 0.0205274 iron 1 Clinical Chemistry Physiology -0.0974214 -0.2141737 0.0193310 0.0595686 -0.2534898 -0.3963648 -0.1106147 0.0728968 -0.1527977 -0.1930307 -0.1125646 0.0205274
lactate dehydrogenase 1 Clinical Chemistry Physiology 0.0941249 -0.0214022 0.2096519 0.0589435 0.1409270 -0.0620594 0.3439133 0.1035664 0.0318801 -0.1412218 0.2049819 0.0883189 lactate dehydrogenase 1 Clinical Chemistry Physiology 0.0941249 -0.0214022 0.2096519 0.0589435 0.1409270 -0.0620594 0.3439133 0.1035664 0.0318801 -0.1412218 0.2049819 0.0883189
latency to center entry 1 Open Field Behaviour 0.1254239 0.0330185 0.2178293 0.0471465 0.3641221 0.2056000 0.5226441 0.0808801 0.2734519 0.0739366 0.4729672 0.1017954 latency to center entry 1 Open Field Behaviour 0.1254239 0.0330185 0.2178293 0.0471465 0.3641221 0.2056000 0.5226441 0.0808801 0.2734519 0.0739366 0.4729672 0.1017954
ldl-cholesterol 1 Clinical Chemistry Physiology 0.4231644 0.1551776 0.6911512 0.1367305 0.2669283 -0.0956833 0.6295400 0.1850093 -0.1615499 -0.6010478 0.2779480 0.2242378 ldl-cholesterol 1 Clinical Chemistry Physiology 0.4231644 0.1551776 0.6911512 0.1367305 0.2669283 -0.0956833 0.6295400 0.1850093 -0.1615499 -0.6010478 0.2779480 0.2242378
lean mass 1 Body Composition (DEXA lean/fat) Morphology 0.1435756 0.0759342 0.2112170 0.0345115 0.3382447 0.2664863 0.4100031 0.0366121 0.1928945 0.1752425 0.2105465 0.0090063 lean mass 1 Body Composition (DEXA lean/fat) Morphology 0.1435756 0.0759342 0.2112170 0.0345115 0.3382447 0.2664863 0.4100031 0.0366121 0.1928945 0.1752425 0.2105465 0.0090063
lean/body weight 1 Body Composition (DEXA lean/fat) Morphology 0.1953833 0.0912480 0.2995186 0.0531312 0.1840786 0.0863764 0.2817807 0.0498490 -0.0122785 -0.0257504 0.0011934 0.0068736 lean/body weight 1 Body Composition (DEXA lean/fat) Morphology 0.1953833 0.0912480 0.2995186 0.0531312 0.1840786 0.0863764 0.2817807 0.0498490 -0.0122785 -0.0257504 0.0011934 0.0068736
left anterior chamber depth 1 Eye Morphology Eye -0.1854856 -0.4305058 0.0595347 0.1250126 -0.1534983 -0.4007283 0.0937316 0.1261401 0.0331746 0.0284172 0.0379321 0.0024273 left anterior chamber depth 1 Eye Morphology Eye -0.1854856 -0.4305058 0.0595347 0.1250126 -0.1534983 -0.4007283 0.0937316 0.1261401 0.0331746 0.0284172 0.0379321 0.0024273
left corneal thickness 1 Eye Morphology Eye -0.1446634 -0.2339950 -0.0553319 0.0455782 -0.1352252 -0.2234178 -0.0470327 0.0449970 0.0075283 -0.0057082 0.0207648 0.0067535 left corneal thickness 1 Eye Morphology Eye -0.1446634 -0.2339950 -0.0553319 0.0455782 -0.1352252 -0.2234178 -0.0470327 0.0449970 0.0075283 -0.0057082 0.0207648 0.0067535
left inner nuclear layer 1 Eye Morphology Eye 0.0480458 -0.0360706 0.1321622 0.0429173 0.0487217 -0.0347622 0.1322057 0.0425946 0.0006956 -0.0095012 0.0108923 0.0052025 left inner nuclear layer 1 Eye Morphology Eye 0.0480458 -0.0360706 0.1321622 0.0429173 0.0487217 -0.0347622 0.1322057 0.0425946 0.0006956 -0.0095012 0.0108923 0.0052025
left outer nuclear layer 1 Eye Morphology Eye -0.0675012 -0.1511666 0.0161641 0.0426872 -0.0618025 -0.1452865 0.0216814 0.0425946 0.0063811 0.0011702 0.0115921 0.0026587 left outer nuclear layer 1 Eye Morphology Eye -0.0675012 -0.1511666 0.0161641 0.0426872 -0.0618025 -0.1452865 0.0216814 0.0425946 0.0063811 0.0011702 0.0115921 0.0026587
left posterior chamber depth 1 Eye Morphology Eye -0.2631046 -0.4734756 -0.0527336 0.1073341 -0.2687360 -0.4790035 -0.0584686 0.1072813 -0.0026027 -0.0146655 0.0094600 0.0061546 left posterior chamber depth 1 Eye Morphology Eye -0.2631046 -0.4734756 -0.0527336 0.1073341 -0.2687360 -0.4790035 -0.0584686 0.1072813 -0.0026027 -0.0146655 0.0094600 0.0061546
left total retinal thickness 1 Eye Morphology Eye -0.1975770 -0.4386627 0.0435087 0.1230052 -0.1932648 -0.4269751 0.0404456 0.1192422 0.0027995 -0.0034907 0.0090898 0.0032094 left total retinal thickness 1 Eye Morphology Eye -0.1975770 -0.4386627 0.0435087 0.1230052 -0.1932648 -0.4269751 0.0404456 0.1192422 0.0027995 -0.0034907 0.0090898 0.0032094
locomotor activity 1 Combined SHIRPA and Dysmorphology Behaviour 0.0960106 0.0224214 0.1695997 0.0375462 -0.0159064 -0.0579694 0.0261566 0.0214611 -0.1105803 -0.1761043 -0.0450562 0.0334313 locomotor activity 1 Combined SHIRPA and Dysmorphology Behaviour 0.0960106 0.0224214 0.1695997 0.0375462 -0.0159064 -0.0579694 0.0261566 0.0214611 -0.1105803 -0.1761043 -0.0450562 0.0334313
lvawd 1 Echo Heart 0.0228924 -0.0247048 0.0704896 0.0242847 0.0454075 -0.0013249 0.0921399 0.0238435 0.0246614 0.0114095 0.0379132 0.0067613 lvawd 1 Echo Heart 0.0228924 -0.0247048 0.0704896 0.0242847 0.0454075 -0.0013249 0.0921399 0.0238435 0.0246614 0.0114095 0.0379132 0.0067613
lvaws 1 Echo Heart -0.0017749 -0.2517581 0.2482083 0.1275448 0.0232601 -0.1776617 0.2241819 0.1025130 0.0112569 -0.0306073 0.0531211 0.0213597 lvaws 1 Echo Heart -0.0017749 -0.2517581 0.2482083 0.1275448 0.0232601 -0.1776617 0.2241819 0.1025130 0.0112569 -0.0306073 0.0531211 0.0213597
lvidd 1 Echo Heart 0.0453256 -0.0241892 0.1148405 0.0354674 0.0981450 0.0208146 0.1754754 0.0394550 0.0528053 0.0378669 0.0677436 0.0076218 lvidd 1 Echo Heart 0.0453256 -0.0241892 0.1148405 0.0354674 0.0981450 0.0208146 0.1754754 0.0394550 0.0528053 0.0378669 0.0677436 0.0076218
lvids 1 Echo Heart -0.0635228 -0.1990947 0.0720491 0.0691706 0.0083352 -0.1335894 0.1502598 0.0724118 0.0756177 0.0525777 0.0986576 0.0117553 lvids 1 Echo Heart -0.0635228 -0.1990947 0.0720491 0.0691706 0.0083352 -0.1335894 0.1502598 0.0724118 0.0756177 0.0525777 0.0986576 0.0117553
lvpwd 1 Echo Heart -0.0317376 -0.1258062 0.0623311 0.0479951 -0.0104248 -0.1271922 0.1063426 0.0595763 0.0302674 0.0131900 0.0473448 0.0087131 lvpwd 1 Echo Heart -0.0317376 -0.1258062 0.0623311 0.0479951 -0.0104248 -0.1271922 0.1063426 0.0595763 0.0302674 0.0131900 0.0473448 0.0087131
lvpws 1 Echo Heart -0.0190522 -0.1014670 0.0633627 0.0420492 0.0089592 -0.0823356 0.1002540 0.0465798 0.0268487 0.0063146 0.0473828 0.0104768 lvpws 1 Echo Heart -0.0190522 -0.1014670 0.0633627 0.0420492 0.0089592 -0.0823356 0.1002540 0.0465798 0.0268487 0.0063146 0.0473828 0.0104768
magnesium 1 Urinalysis Physiology 0.0161699 -0.0231196 0.0554593 0.0200460 -0.0513056 -0.1167021 0.0140909 0.0333662 -0.0413354 -0.1135580 0.0308871 0.0368489 magnesium 1 Urinalysis Physiology 0.0161699 -0.0231196 0.0554593 0.0200460 -0.0513056 -0.1167021 0.0140909 0.0333662 -0.0413354 -0.1135580 0.0308871 0.0368489
mean cell hemoglobin concentration 1 Hematology Hematology 0.0378015 -0.0880637 0.1636666 0.0642181 0.0253063 -0.1086076 0.1592202 0.0683247 -0.0113450 -0.0150702 -0.0076199 0.0019006 mean cell hemoglobin concentration 1 Hematology Hematology 0.0378015 -0.0880637 0.1636666 0.0642181 0.0253063 -0.1086076 0.1592202 0.0683247 -0.0113450 -0.0150702 -0.0076199 0.0019006
mean cell volume 1 Hematology Hematology 0.0039175 -0.0957495 0.1035845 0.0508514 -0.0030447 -0.0961742 0.0900848 0.0475159 -0.0063502 -0.0099649 -0.0027355 0.0018443 mean cell volume 1 Hematology Hematology 0.0039175 -0.0957495 0.1035845 0.0508514 -0.0030447 -0.0961742 0.0900848 0.0475159 -0.0063502 -0.0099649 -0.0027355 0.0018443
mean corpuscular hemoglobin 1 Hematology Hematology -0.0025833 -0.0653065 0.0601398 0.0320022 -0.0193465 -0.0824670 0.0437741 0.0322049 -0.0169768 -0.0197231 -0.0142305 0.0014012 mean corpuscular hemoglobin 1 Hematology Hematology -0.0025833 -0.0653065 0.0601398 0.0320022 -0.0193465 -0.0824670 0.0437741 0.0322049 -0.0169768 -0.0197231 -0.0142305 0.0014012
mean platelet volume 1 Hematology Hematology 0.0487366 -0.0044688 0.1019419 0.0271461 0.0353913 -0.0210323 0.0918150 0.0287881 -0.0174066 -0.0276044 -0.0072089 0.0052030 mean platelet volume 1 Hematology Hematology 0.0487366 -0.0044688 0.1019419 0.0271461 0.0353913 -0.0210323 0.0918150 0.0287881 -0.0174066 -0.0276044 -0.0072089 0.0052030
mean r amplitude 1 Electrocardiogram (ECG) Heart 0.0084703 -0.0282092 0.0451499 0.0187144 -0.0948208 -0.1630495 -0.0265922 0.0348112 -0.0835612 -0.1503108 -0.0168116 0.0340565 mean r amplitude 1 Electrocardiogram (ECG) Heart 0.0084703 -0.0282092 0.0451499 0.0187144 -0.0948208 -0.1630495 -0.0265922 0.0348112 -0.0835612 -0.1503108 -0.0168116 0.0340565
mean sr amplitude 1 Electrocardiogram (ECG) Heart 0.0284617 -0.0131943 0.0701178 0.0212535 -0.0876811 -0.1270777 -0.0482845 0.0201007 -0.1130259 -0.1558048 -0.0702470 0.0218264 mean sr amplitude 1 Electrocardiogram (ECG) Heart 0.0284617 -0.0131943 0.0701178 0.0212535 -0.0876811 -0.1270777 -0.0482845 0.0201007 -0.1130259 -0.1558048 -0.0702470 0.0218264
number of center entries 1 Open Field Behaviour 0.0150703 -0.0534907 0.0836313 0.0349807 -0.0361259 -0.0952472 0.0229955 0.0301645 -0.0588092 -0.1679907 0.0503723 0.0557059 number of center entries 1 Open Field Behaviour 0.0150703 -0.0534907 0.0836313 0.0349807 -0.0361259 -0.0952472 0.0229955 0.0301645 -0.0588092 -0.1679907 0.0503723 0.0557059
number of rears - total 1 Open Field Behaviour -0.0011326 -0.1141113 0.1118461 0.0576432 0.1869490 -0.0392422 0.4131402 0.1154058 0.1794328 0.0568682 0.3019974 0.0625341 number of rears - total 1 Open Field Behaviour -0.0011326 -0.1141113 0.1118461 0.0576432 0.1869490 -0.0392422 0.4131402 0.1154058 0.1794328 0.0568682 0.3019974 0.0625341
others 1 Immunophenotyping Immunology -0.1684902 -0.2596648 -0.0773156 0.0465185 -0.1515195 -0.2435956 -0.0594434 0.0469785 0.0196158 0.0049349 0.0342967 0.0074904 others 1 Immunophenotyping Immunology -0.1684902 -0.2596648 -0.0773156 0.0465185 -0.1515195 -0.2435956 -0.0594434 0.0469785 0.0196158 0.0049349 0.0342967 0.0074904
pdcs 1 Immunophenotyping Immunology -0.1732553 -0.4003845 0.0538738 0.1158844 -0.2572491 -0.7186201 0.2041219 0.2353977 -0.0915619 -0.2522236 0.0690997 0.0819717 pdcs 1 Immunophenotyping Immunology -0.1732553 -0.4003845 0.0538738 0.1158844 -0.2572491 -0.7186201 0.2041219 0.2353977 -0.0915619 -0.2522236 0.0690997 0.0819717
percentage center time 1 Open Field Behaviour -0.0219679 -0.0863184 0.0423826 0.0328325 -0.0188907 -0.0912088 0.0534274 0.0368977 -0.0061802 -0.0972542 0.0848938 0.0464672 percentage center time 1 Open Field Behaviour -0.0219679 -0.0863184 0.0423826 0.0328325 -0.0188907 -0.0912088 0.0534274 0.0368977 -0.0061802 -0.0972542 0.0848938 0.0464672
periphery average speed 1 Open Field Behaviour -0.0444272 -0.1082870 0.0194327 0.0325822 -0.1401304 -0.2117709 -0.0684898 0.0365520 -0.0963838 -0.1446043 -0.0481633 0.0246028 periphery average speed 1 Open Field Behaviour -0.0444272 -0.1082870 0.0194327 0.0325822 -0.1401304 -0.2117709 -0.0684898 0.0365520 -0.0963838 -0.1446043 -0.0481633 0.0246028
periphery distance travelled 1 Open Field Behaviour -0.0313217 -0.0918314 0.0291879 0.0308728 -0.1342236 -0.1874097 -0.0810376 0.0271362 -0.1037239 -0.1714836 -0.0359643 0.0345719 periphery distance travelled 1 Open Field Behaviour -0.0313217 -0.0918314 0.0291879 0.0308728 -0.1342236 -0.1874097 -0.0810376 0.0271362 -0.1037239 -0.1714836 -0.0359643 0.0345719
periphery permanence time 1 Open Field Behaviour -0.0369177 -0.1277076 0.0538721 0.0463222 -0.0294978 -0.1006346 0.0416390 0.0362950 0.0077038 -0.0137850 0.0291927 0.0109639 periphery permanence time 1 Open Field Behaviour -0.0369177 -0.1277076 0.0538721 0.0463222 -0.0294978 -0.1006346 0.0416390 0.0362950 0.0077038 -0.0137850 0.0291927 0.0109639
periphery resting time 1 Open Field Behaviour -0.0536346 -0.1266045 0.0193353 0.0372302 -0.0572459 -0.1071515 -0.0073404 0.0254625 0.0026007 -0.0558538 0.0610552 0.0298243 periphery resting time 1 Open Field Behaviour -0.0536346 -0.1266045 0.0193353 0.0372302 -0.0572459 -0.1071515 -0.0073404 0.0254625 0.0026007 -0.0558538 0.0610552 0.0298243
phosphorus 1 Clinical Chemistry Physiology -0.0485897 -0.0839101 -0.0132693 0.0180209 -0.0826120 -0.1576473 -0.0075767 0.0382840 -0.0420616 -0.0813582 -0.0027650 0.0200497 phosphorus 1 Clinical Chemistry Physiology -0.0485897 -0.0839101 -0.0132693 0.0180209 -0.0826120 -0.1576473 -0.0075767 0.0382840 -0.0420616 -0.0813582 -0.0027650 0.0200497
platelet count 1 Hematology Hematology 0.0737198 0.0205862 0.1268534 0.0271095 0.2415135 0.1865330 0.2964940 0.0280518 0.1642192 0.1369820 0.1914563 0.0138968 platelet count 1 Hematology Hematology 0.0737198 0.0205862 0.1268534 0.0271095 0.2415135 0.1865330 0.2964940 0.0280518 0.1642192 0.1369820 0.1914563 0.0138968
pnn5(6>ms) 1 Electrocardiogram (ECG) Heart 0.2906905 0.1716202 0.4097607 0.0607512 -0.2926013 -0.5272121 -0.0579905 0.1197016 -0.6004767 -0.9244113 -0.2765420 0.1652758 pnn5(6>ms) 1 Electrocardiogram (ECG) Heart 0.2906905 0.1716202 0.4097607 0.0607512 -0.2926013 -0.5272121 -0.0579905 0.1197016 -0.6004767 -0.9244113 -0.2765420 0.1652758
potassium 1 Clinical Chemistry Physiology -0.0705522 -0.2214989 0.0803945 0.0770150 -0.0074675 -0.1729366 0.1580015 0.0844245 0.0704162 0.0476647 0.0931676 0.0116081 potassium 1 Clinical Chemistry Physiology -0.0705522 -0.2214989 0.0803945 0.0770150 -0.0074675 -0.1729366 0.1580015 0.0844245 0.0704162 0.0476647 0.0931676 0.0116081
pq 1 Electrocardiogram (ECG) Heart -0.0650960 -0.1538776 0.0236857 0.0452976 -0.0648322 -0.1270688 -0.0025955 0.0317540 0.0015656 -0.0259865 0.0291178 0.0140575 pq 1 Electrocardiogram (ECG) Heart -0.0650960 -0.1538776 0.0236857 0.0452976 -0.0648322 -0.1270688 -0.0025955 0.0317540 0.0015656 -0.0259865 0.0291178 0.0140575
pr 1 Electrocardiogram (ECG) Heart -0.0564860 -0.1048371 -0.0081349 0.0246694 -0.0754718 -0.1235224 -0.0274213 0.0245160 -0.0183785 -0.0319887 -0.0047684 0.0069441 pr 1 Electrocardiogram (ECG) Heart -0.0564860 -0.1048371 -0.0081349 0.0246694 -0.0754718 -0.1235224 -0.0274213 0.0245160 -0.0183785 -0.0319887 -0.0047684 0.0069441
qrs 1 Electrocardiogram (ECG) Heart 0.0725454 0.0354722 0.1096185 0.0189152 0.0681074 0.0300869 0.1061278 0.0193986 -0.0054233 -0.0154885 0.0046418 0.0051354 qrs 1 Electrocardiogram (ECG) Heart 0.0725454 0.0354722 0.1096185 0.0189152 0.0681074 0.0300869 0.1061278 0.0193986 -0.0054233 -0.0154885 0.0046418 0.0051354
qtc 1 Electrocardiogram (ECG) Heart 0.0328106 -0.0101032 0.0757244 0.0218952 0.0310473 -0.0207365 0.0828310 0.0264208 -0.0005046 -0.0085696 0.0075604 0.0041149 qtc 1 Electrocardiogram (ECG) Heart 0.0328106 -0.0101032 0.0757244 0.0218952 0.0310473 -0.0207365 0.0828310 0.0264208 -0.0005046 -0.0085696 0.0075604 0.0041149
qtc dispersion 1 Electrocardiogram (ECG) Heart 0.0031258 -0.0523919 0.0586435 0.0283259 -0.0046501 -0.1060530 0.0967528 0.0517371 -0.0077373 -0.0510162 0.0355416 0.0220815 qtc dispersion 1 Electrocardiogram (ECG) Heart 0.0031258 -0.0523919 0.0586435 0.0283259 -0.0046501 -0.1060530 0.0967528 0.0517371 -0.0077373 -0.0510162 0.0355416 0.0220815
red blood cell count 1 Hematology Hematology 0.0773455 0.0071933 0.1474977 0.0357926 0.0997278 0.0316996 0.1677560 0.0347089 0.0228493 0.0088583 0.0368404 0.0071384 red blood cell count 1 Hematology Hematology 0.0773455 0.0071933 0.1474977 0.0357926 0.0997278 0.0316996 0.1677560 0.0347089 0.0228493 0.0088583 0.0368404 0.0071384
red blood cell distribution width 1 Hematology Hematology 0.1248464 -0.0035148 0.2532076 0.0654916 0.1353460 -0.0035862 0.2742782 0.0708851 0.0104789 -0.0032056 0.0241635 0.0069821 red blood cell distribution width 1 Hematology Hematology 0.1248464 -0.0035148 0.2532076 0.0654916 0.1353460 -0.0035862 0.2742782 0.0708851 0.0104789 -0.0032056 0.0241635 0.0069821
respiration rate 1 Echo Heart -0.1384843 -0.2178736 -0.0590950 0.0405055 -0.0703570 -0.1795875 0.0388735 0.0557309 0.0611034 0.0227141 0.0994926 0.0195867 respiration rate 1 Echo Heart -0.1384843 -0.2178736 -0.0590950 0.0405055 -0.0703570 -0.1795875 0.0388735 0.0557309 0.0611034 0.0227141 0.0994926 0.0195867
respiratory exchange ratio 1 Indirect Calorimetry Metabolism -0.0116565 -0.0896490 0.0663361 0.0397928 -0.0106530 -0.0878483 0.0665424 0.0393861 0.0017027 -0.0057348 0.0091402 0.0037947 respiratory exchange ratio 1 Indirect Calorimetry Metabolism -0.0116565 -0.0896490 0.0663361 0.0397928 -0.0106530 -0.0878483 0.0665424 0.0393861 0.0017027 -0.0057348 0.0091402 0.0037947
right anterior chamber depth 1 Eye Morphology Eye -0.4491432 -1.3293546 0.4310682 0.4490957 -0.4157377 -1.2918620 0.4603867 0.4470104 0.0316098 0.0264512 0.0367685 0.0026320 right anterior chamber depth 1 Eye Morphology Eye -0.4491432 -1.3293546 0.4310682 0.4490957 -0.4157377 -1.2918620 0.4603867 0.4470104 0.0316098 0.0264512 0.0367685 0.0026320
right corneal thickness 1 Eye Morphology Eye -0.0355898 -0.2280522 0.1568726 0.0981969 -0.0306550 -0.1963692 0.1350592 0.0845496 -0.0013855 -0.0237830 0.0210121 0.0114275 right corneal thickness 1 Eye Morphology Eye -0.0355898 -0.2280522 0.1568726 0.0981969 -0.0306550 -0.1963692 0.1350592 0.0845496 -0.0013855 -0.0237830 0.0210121 0.0114275
right inner nuclear layer 1 Eye Morphology Eye -0.2545083 -0.7633116 0.2542949 0.2595983 -0.2785114 -0.8373133 0.2802906 0.2851083 -0.0175090 -0.0664158 0.0313978 0.0249529 right inner nuclear layer 1 Eye Morphology Eye -0.2545083 -0.7633116 0.2542949 0.2595983 -0.2785114 -0.8373133 0.2802906 0.2851083 -0.0175090 -0.0664158 0.0313978 0.0249529
right outer nuclear layer 1 Eye Morphology Eye 0.0061253 -0.0781241 0.0903746 0.0429851 0.0109098 -0.0731427 0.0949622 0.0428847 0.0055513 0.0000519 0.0110508 0.0028059 right outer nuclear layer 1 Eye Morphology Eye 0.0061253 -0.0781241 0.0903746 0.0429851 0.0109098 -0.0731427 0.0949622 0.0428847 0.0055513 0.0000519 0.0110508 0.0028059
right posterior chamber depth 1 Eye Morphology Eye -0.0775673 -0.2905688 0.1354341 0.1086762 -0.0764571 -0.2893152 0.1364010 0.1086031 0.0071990 -0.0178434 0.0322413 0.0127769 right posterior chamber depth 1 Eye Morphology Eye -0.0775673 -0.2905688 0.1354341 0.1086762 -0.0764571 -0.2893152 0.1364010 0.1086031 0.0071990 -0.0178434 0.0322413 0.0127769
right total retinal thickness 1 Eye Morphology Eye -0.1987993 -0.6457320 0.2481333 0.2280310 -0.1925482 -0.6285715 0.2434750 0.2224649 0.0052882 -0.0045957 0.0151720 0.0050429 right total retinal thickness 1 Eye Morphology Eye -0.1987993 -0.6457320 0.2481333 0.2280310 -0.1925482 -0.6285715 0.2434750 0.2224649 0.0052882 -0.0045957 0.0151720 0.0050429
rmssd 1 Electrocardiogram (ECG) Heart 0.1800273 -0.0882317 0.4482864 0.1368694 -0.0161048 -0.4112809 0.3790712 0.2016241 -0.1178703 -0.2449843 0.0092436 0.0648552 rmssd 1 Electrocardiogram (ECG) Heart 0.1800273 -0.0882317 0.4482864 0.1368694 -0.0161048 -0.4112809 0.3790712 0.2016241 -0.1178703 -0.2449843 0.0092436 0.0648552
rp macrophage (cd19- cd11c-) 1 Immunophenotyping Immunology -0.0765771 -0.3398075 0.1866533 0.1343037 -0.0747691 -0.3351316 0.1855933 0.1328404 -0.0746396 -0.2072980 0.0580188 0.0676841 rp macrophage (cd19- cd11c-) 1 Immunophenotyping Immunology -0.0765771 -0.3398075 0.1866533 0.1343037 -0.0747691 -0.3351316 0.1855933 0.1328404 -0.0746396 -0.2072980 0.0580188 0.0676841
rr 1 Electrocardiogram (ECG) Heart -0.0761505 -0.1876687 0.0353678 0.0568981 -0.0896869 -0.2063458 0.0269721 0.0595210 -0.0125023 -0.0214082 -0.0035963 0.0045440 rr 1 Electrocardiogram (ECG) Heart -0.0761505 -0.1876687 0.0353678 0.0568981 -0.0896869 -0.2063458 0.0269721 0.0595210 -0.0125023 -0.0214082 -0.0035963 0.0045440
sodium 1 Clinical Chemistry Physiology 0.0262100 -0.1171674 0.1695873 0.0731531 0.0338228 -0.1337162 0.2013618 0.0854806 0.0099680 0.0065815 0.0133545 0.0017278 sodium 1 Clinical Chemistry Physiology 0.0262100 -0.1171674 0.1695873 0.0731531 0.0338228 -0.1337162 0.2013618 0.0854806 0.0099680 0.0065815 0.0133545 0.0017278
spleen weight 1 Immunophenotyping Immunology 0.1874259 -0.0500875 0.4249393 0.1211825 0.1133706 -0.1604807 0.3872220 0.1397227 -0.1542349 -0.2104415 -0.0980283 0.0286774 spleen weight 1 Immunophenotyping Immunology 0.1874259 -0.0500875 0.4249393 0.1211825 0.1133706 -0.1604807 0.3872220 0.1397227 -0.1542349 -0.2104415 -0.0980283 0.0286774
st 1 Electrocardiogram (ECG) Heart 0.0032888 -0.0544512 0.0610288 0.0294597 -0.0054976 -0.0811810 0.0701858 0.0386147 -0.0034902 -0.0175917 0.0106113 0.0071948 st 1 Electrocardiogram (ECG) Heart 0.0032888 -0.0544512 0.0610288 0.0294597 -0.0054976 -0.0811810 0.0701858 0.0386147 -0.0034902 -0.0175917 0.0106113 0.0071948
stroke volume 1 Echo Heart 0.0594276 -0.0782445 0.1970997 0.0702422 0.1574330 0.0091891 0.3056769 0.0756360 0.0937375 0.0775587 0.1099162 0.0082546 stroke volume 1 Echo Heart 0.0594276 -0.0782445 0.1970997 0.0702422 0.1574330 0.0091891 0.3056769 0.0756360 0.0937375 0.0775587 0.1099162 0.0082546
tibia length 1 Heart Weight Morphology -0.1475403 -0.4396127 0.1445320 0.1490192 -0.1374401 -0.4261352 0.1512551 0.1472961 0.0095199 0.0059199 0.0131200 0.0018368 tibia length 1 Heart Weight Morphology -0.1475403 -0.4396127 0.1445320 0.1490192 -0.1374401 -0.4261352 0.1512551 0.1472961 0.0095199 0.0059199 0.0131200 0.0018368
total bilirubin 1 Clinical Chemistry Physiology 0.0605449 -0.0097669 0.1308567 0.0358740 0.0022671 -0.0859910 0.0905252 0.0450305 -0.0550333 -0.0979518 -0.0121148 0.0218976 total bilirubin 1 Clinical Chemistry Physiology 0.0605449 -0.0097669 0.1308567 0.0358740 0.0022671 -0.0859910 0.0905252 0.0450305 -0.0550333 -0.0979518 -0.0121148 0.0218976
total cholesterol 1 Clinical Chemistry Physiology 0.0942595 -0.0751596 0.2636786 0.0864399 0.3142208 0.1125613 0.5158803 0.1028894 0.2027583 0.1750477 0.2304688 0.0141383 total cholesterol 1 Clinical Chemistry Physiology 0.0942595 -0.0751596 0.2636786 0.0864399 0.3142208 0.1125613 0.5158803 0.1028894 0.2027583 0.1750477 0.2304688 0.0141383
total food intake 1 Indirect Calorimetry Metabolism -0.1192293 -0.2542902 0.0158316 0.0689099 -0.0964842 -0.2564912 0.0635228 0.0816377 0.0267691 -0.0233285 0.0768667 0.0255605 total food intake 1 Indirect Calorimetry Metabolism -0.1192293 -0.2542902 0.0158316 0.0689099 -0.0964842 -0.2564912 0.0635228 0.0816377 0.0267691 -0.0233285 0.0768667 0.0255605
total protein 1 Clinical Chemistry Physiology -0.0422347 -0.0623878 -0.0220816 0.0102824 -0.0355909 -0.0619127 -0.0092692 0.0134297 0.0092660 -0.0008158 0.0193478 0.0051439 total protein 1 Clinical Chemistry Physiology -0.0422347 -0.0623878 -0.0220816 0.0102824 -0.0355909 -0.0619127 -0.0092692 0.0134297 0.0092660 -0.0008158 0.0193478 0.0051439
total water intake 1 Indirect Calorimetry Metabolism -0.1457383 -0.2373165 -0.0541601 0.0467244 -0.2097443 -0.2681948 -0.1512937 0.0298223 -0.0654284 -0.1374220 0.0065653 0.0367321 total water intake 1 Indirect Calorimetry Metabolism -0.1457383 -0.2373165 -0.0541601 0.0467244 -0.2097443 -0.2681948 -0.1512937 0.0298223 -0.0654284 -0.1374220 0.0065653 0.0367321
triglycerides 1 Clinical Chemistry Physiology -0.0320020 -0.1233659 0.0593619 0.0466151 0.3268957 0.2087111 0.4450803 0.0602994 0.3473552 0.2592006 0.4355098 0.0449777 triglycerides 1 Clinical Chemistry Physiology -0.0320020 -0.1233659 0.0593619 0.0466151 0.3268957 0.2087111 0.4450803 0.0602994 0.3473552 0.2592006 0.4355098 0.0449777
urea (blood urea nitrogen - bun) 1 Clinical Chemistry Physiology -0.1405306 -0.2664120 -0.0146491 0.0642264 -0.0950040 -0.2507897 0.0607817 0.0794840 0.0403162 0.0051883 0.0754441 0.0179227 urea (blood urea nitrogen - bun) 1 Clinical Chemistry Physiology -0.1405306 -0.2664120 -0.0146491 0.0642264 -0.0950040 -0.2507897 0.0607817 0.0794840 0.0403162 0.0051883 0.0754441 0.0179227
uric acid 1 Clinical Chemistry Physiology 0.0367062 -0.0660619 0.1394744 0.0524337 0.3626957 0.0914512 0.6339402 0.1383926 0.4472349 -0.0801891 0.9746588 0.2690988 uric acid 1 Clinical Chemistry Physiology 0.0367062 -0.0660619 0.1394744 0.0524337 0.3626957 0.0914512 0.6339402 0.1383926 0.4472349 -0.0801891 0.9746588 0.2690988
white blood cell count 1 Hematology Hematology -0.0907957 -0.1703063 -0.0112852 0.0405673 0.1168446 -0.0023934 0.2360826 0.0608368 0.1978876 0.1368305 0.2589447 0.0311521 white blood cell count 1 Hematology Hematology -0.0907957 -0.1703063 -0.0112852 0.0405673 0.1168446 -0.0023934 0.2360826 0.0608368 0.1978876 0.1368305 0.2589447 0.0311521
whole arena average speed 1 Open Field Behaviour -0.0156634 -0.0857564 0.0544296 0.0357624 -0.1140149 -0.1840029 -0.0440269 0.0357088 -0.0997437 -0.1519566 -0.0475307 0.0266397 whole arena average speed 1 Open Field Behaviour -0.0156634 -0.0857564 0.0544296 0.0357624 -0.1140149 -0.1840029 -0.0440269 0.0357088 -0.0997437 -0.1519566 -0.0475307 0.0266397
whole arena resting time 1 Open Field Behaviour -0.0531307 -0.1011672 -0.0050941 0.0245089 -0.0593672 -0.1076067 -0.0111276 0.0246125 0.0045878 -0.0513396 0.0605152 0.0285349 whole arena resting time 1 Open Field Behaviour -0.0531307 -0.1011672 -0.0050941 0.0245089 -0.0593672 -0.1076067 -0.0111276 0.0246125 0.0045878 -0.0513396 0.0605152 0.0285349

Prepare data

Nesting, calculating the number of parameters within each grouping term, and running the meta-analysis

metacombo_final <- metacombo %>%
 group_by(GroupingTerm) %>%
 nest()


# **Calculate number of parameters per grouping term 

metacombo_final <- metacombo_final  %>%  mutate(para_per_GroupingTerm = map_dbl(data, nrow))

# For all grouping terms
metacombo_final_all <- metacombo %>%
 nest()

# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate 

overall1 <- metacombo_final %>% 

  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
       model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
       model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F))) 

# **Final fixed effects meta-analyses ACROSS grouping terms, with SE of the estimate 

overall_all1 <- metacombo_final_all %>% 

  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
       model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)),
       model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F))) 

Re-structure data for each grouping term; delete unused variables

Behaviour <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Behaviour")    %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Immunology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Immunology")    %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Hematology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Hematology")    %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Hearing <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Hearing")   %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Physiology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Physiology")  %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Metabolism <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Metabolism")  %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Morphology <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Morphology")  %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Heart <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Heart")  %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

Eye <- as.data.frame(overall1 %>% filter(., GroupingTerm == "Eye")  %>%  mutate(lnCVR=.[[4]][[1]]$b, lnCVR_lower=.[[4]][[1]]$ci.lb, lnCVR_upper=.[[4]][[1]]$ci.ub, lnCVR_se=.[[4]][[1]]$se,
                  lnVR=.[[5]][[1]]$b, lnVR_lower=.[[5]][[1]]$ci.lb, lnVR_upper=.[[5]][[1]]$ci.ub, lnVR_se=.[[5]][[1]]$se,
                lnRR=.[[6]][[1]]$b, lnRR_lower=.[[6]][[1]]$ci.lb, lnRR_upper=.[[6]][[1]]$ci.ub, lnRR_se=.[[6]][[1]]$se) )[, c(1,7:18)] 

All <- as.data.frame(overall_all1  %>%  mutate(lnCVR=.[[2]][[1]]$b, lnCVR_lower=.[[2]][[1]]$ci.lb, lnCVR_upper=.[[2]][[1]]$ci.ub, lnCVR_se=.[[2]][[1]]$se,lnVR=.[[3]][[1]]$b, lnVR_lower=.[[3]][[1]]$ci.lb, lnVR_upper=.[[3]][[1]]$ci.ub, lnVR_se=.[[3]][[1]]$se,
                lnRR=.[[4]][[1]]$b, lnRR_lower=.[[4]][[1]]$ci.lb, lnRR_upper=.[[4]][[1]]$ci.ub, lnRR_se=.[[4]][[1]]$se) )[, c(5:16)] 

All$lnCVR <- as.numeric(All$lnCVR)
All$lnVR <- as.numeric(All$lnVR)
All$lnRR <- as.numeric(All$lnRR)
All <- All %>% mutate(GroupingTerm = "All")

overall2 <- bind_rows(Behaviour, Morphology, Metabolism, Physiology, Immunology, Hematology, Heart, Hearing, Eye, All)

Visualisation

Plot FIGURE 2 [4 in ms] (First-order meta analysis results)

Re-order grouping terms

meta_clean$GroupingTerm <- factor(meta_clean$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye") )
meta_clean$GroupingTerm <- factor(meta_clean$GroupingTerm, rev(levels(meta_clean$GroupingTerm)))


# *Prepare data for all traits

meta.plot2.all <- meta_clean %>% select(lnCVR, lnVR, lnRR, GroupingTerm) %>% arrange(GroupingTerm)

meta.plot2.all.b <- gather(meta.plot2.all, trait, value, c(lnCVR, lnVR, lnRR))

meta.plot2.all.b$trait <- factor(meta.plot2.all.b$trait, levels =c("lnCVR","lnVR","lnRR") )

meta.plot2.all.c <- meta.plot2.all.b  %>%
                group_by_at(vars(trait, GroupingTerm)) %>%
                summarise(malebias = sum(value > 0), femalebias = sum(value<= 0), total= malebias + femalebias, 
                    malepercent = malebias*100/total, femalepercent = femalebias*100/total)  

meta.plot2.all.c$label <- "All traits"

# restructure to create stacked bar plots

meta.plot2.all.d <- as.data.frame(meta.plot2.all.c)
meta.plot2.all.e <- gather(meta.plot2.all.d, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)

# create new sample size variable

meta.plot2.all.e$samplesize <- with(meta.plot2.all.e, ifelse(sex == "malepercent", malebias, femalebias) )


malebias_Fig2_alltraits <- 
ggplot(meta.plot2.all.e) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = 50, linetype = "dashed", color = "gray40") +
  geom_text(data = subset(meta.plot2.all.e, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5), 
    color = "white", size = 3.5) +
 facet_grid(cols = vars(trait), rows = vars(label),  labeller = label_wrap_gen(width = 18), 
      scales= 'free', space='free') +
 scale_fill_brewer(palette = "Set2") +
theme_bw(base_size = 18) +
    theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_text(size = 12),
        strip.background = element_rect(colour = NULL,linetype = "blank", fill = "gray90"),
        text = element_text(size=14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.position = "none",
        axis.title.x = element_blank(),
      axis.title.y = element_blank()  ) +
    coord_flip()

#malebias_Fig2_alltraits

Prepare data for traits with CI not overlapping 0

create column with 1= different from zero, 0= zero included in CI

meta.plot2.sig <- meta_clean %>% 
    mutate(lnCVRsig = ifelse(lnCVR_lower*lnCVR_upper >0, 1, 0), lnVRsig = ifelse(lnVR_lower*lnVR_upper >0, 1, 0), 
         lnRRsig = ifelse(lnRR_lower*lnRR_upper > 0, 1,0))

meta.plot2.sig.b <- meta.plot2.sig[, c("lnCVR", "lnVR", "lnRR", "lnCVRsig", "lnVRsig", "lnRRsig", "GroupingTerm")]   

meta.plot2.sig.c <- gather(meta.plot2.sig.b, trait, value, lnCVR:lnRR)
meta.plot2.sig.c$sig <- "placeholder"

meta.plot2.sig.c$trait <- factor(meta.plot2.sig.c$trait, levels =c("lnCVR","lnVR","lnRR") )

meta.plot2.sig.c$sig <- ifelse(meta.plot2.sig.c$trait == "lnCVR", meta.plot2.sig.c$lnCVRsig,
                ifelse(meta.plot2.sig.c$trait == "lnVR", meta.plot2.sig.c$lnVRsig, meta.plot2.sig.c$lnRRsig))

#choosing sex biased ln-ratios significantly larger than 0
meta.plot2.sig.malebias <- meta.plot2.sig.c %>%
                group_by_at(vars(trait, GroupingTerm)) %>%
                filter(sig== 1) %>%
                summarise(male_sig = sum(value > 0), female_sig = sum(value < 0), total = male_sig + female_sig) 

meta.plot2.sig.malebias <- ungroup(meta.plot2.sig.malebias) %>%
                add_row(trait = "lnCVR", GroupingTerm = "Hearing", male_sig = 0, female_sig = 0, .before = 4) %>% #add "Hearing" for lnCVR (not filtered as only zeros)
                mutate(malepercent = male_sig*100 / total, femalepercent = female_sig*100 / total)

meta.plot2.sig.malebias$label <- "CI not overlapping zero"

# restructure to create stacked bar plots

meta.plot2.sig.bothsexes <- as.data.frame(meta.plot2.sig.malebias)
meta.plot2.sig.bothsexes.b <- gather(meta.plot2.sig.bothsexes, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)

# create new sample size variable

meta.plot2.sig.bothsexes.b$samplesize <- with(meta.plot2.sig.bothsexes.b, ifelse(sex == "malepercent", male_sig, female_sig) )

# *Plot Fig2 all significant results (CI not overlapping zero): 
#     no sig. lnCVR for 'Hearing' in either sex; no sig. male-biased lnCVR for 'Immunology' and 'Eye, and no sig. male-biased lnVR for 'Eye'


malebias_Fig2_sigtraits <-  
ggplot(meta.plot2.sig.bothsexes.b) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = 50, linetype = "dashed", color = "gray40") +
  geom_text(data = subset(meta.plot2.sig.bothsexes.b, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5), 
    color = "white", size = 3.5) +
 facet_grid(cols = vars(trait), rows = vars(label),  labeller = label_wrap_gen(width = 18), 
      scales= 'free', space='free') +
 scale_fill_brewer(palette = "Set2") +
theme_bw(base_size = 18) +
    theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = NULL,linetype = "blank", fill = "gray90"),
        text = element_text(size=14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.position = "none",
        axis.title.x = element_blank(),
      axis.title.y = element_blank()  ) +
    coord_flip()

Prepare data for traits with effect size ratios > 10% larger in males

meta.plot2.over10 <- meta_clean %>% select(lnCVR, lnVR, lnRR, GroupingTerm) %>% arrange(GroupingTerm)

meta.plot2.over10.b <- gather(meta.plot2.over10, trait, value, c(lnCVR, lnVR, lnRR))

meta.plot2.over10.b$trait <- factor(meta.plot2.over10.b$trait, levels =c("lnCVR","lnVR","lnRR") )

meta.plot2.over10.c <- meta.plot2.over10.b  %>%
                group_by_at(vars(trait, GroupingTerm)) %>%
                summarise(malebias = sum(value > log(11/10)), femalebias = sum(value < log(9/10)), total= malebias + femalebias, 
                    malepercent = malebias*100/total, femalepercent = femalebias*100/total)  

meta.plot2.over10.c$label <- "Sex difference in m/f ratios > 10%"

# restructure to create stacked bar plots

meta.plot2.over10.c <- as.data.frame(meta.plot2.over10.c)
meta.plot2.over10.d <- gather(meta.plot2.over10.c, key = sex, value = percent, malepercent:femalepercent, factor_key = TRUE)

# create new sample size variable

meta.plot2.over10.d$samplesize <- with(meta.plot2.over10.d, ifelse(sex == "malepercent", malebias, femalebias) )

# *Plot Fig2 Sex difference in m/f ratio > 10%
malebias_Fig2_over10 <- 
ggplot(meta.plot2.over10.d) +
  aes(x = GroupingTerm, y = percent, fill = sex) +
  geom_col() +
  geom_hline(yintercept = 50, linetype = "dashed", color = "gray40") +
  geom_text(data = subset(meta.plot2.over10.d, samplesize != 0), aes(label = samplesize), position = position_stack(vjust = .5), 
    color = "white", size = 3.5) +
 facet_grid(cols = vars(trait), rows = vars(label),  labeller = label_wrap_gen(width = 18), 
      scales= 'free', space='free') +
 scale_fill_brewer(palette = "Set2") +
theme_bw(base_size = 18) +
    theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = NULL,linetype = "blank", fill = "gray90"),
        text = element_text(size=14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.position = "none",
        axis.title.x = element_blank(),
      axis.title.y = element_blank()  ) +
    coord_flip()
# malebias_Fig2_over10

Create final combined Figure (Figure 2)

Fig2 <- ggarrange(malebias_Fig2_alltraits, malebias_Fig2_sigtraits,malebias_Fig2_over10, nrow = 3, align = "v", heights = c(1.22,1,1), labels = c("A", "B", "C"))
Fig2

ggsave("Fig2.pdf", plot = Fig2, width = 6, height = 5) 

Overall results of second order meta anlaysis (Figure 4a)

Restructure data for plotting

Data are restructured, and grouping terms are being re-ordered

overall3 <- gather(overall2, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)

lnCVR.ci <- overall3 %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3 %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3 %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                   

overall4 <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)

# re-order Grouping Terms

overall4$GroupingTerm <- factor(overall4$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall4$GroupingTerm <- factor(overall4$GroupingTerm, rev(levels(overall4$GroupingTerm)))
overall4$label <- "All traits"

kable(cbind(overall4, overall4)) %>%
  kable_styling() %>%
  scroll_box(width = "100%", height = "200px")
GroupingTerm parameter value ci.low ci.high label GroupingTerm parameter value ci.low ci.high label
Behaviour lnCVR -0.0035049 -0.0240688 0.0170591 All traits Behaviour lnCVR -0.0035049 -0.0240688 0.0170591 All traits
Morphology lnCVR 0.0774453 0.0414171 0.1134734 All traits Morphology lnCVR 0.0774453 0.0414171 0.1134734 All traits
Metabolism lnCVR -0.0430831 -0.1125945 0.0264283 All traits Metabolism lnCVR -0.0430831 -0.1125945 0.0264283 All traits
Physiology lnCVR 0.0126792 -0.0140094 0.0393678 All traits Physiology lnCVR 0.0126792 -0.0140094 0.0393678 All traits
Immunology lnCVR -0.0681817 -0.0980135 -0.0383499 All traits Immunology lnCVR -0.0681817 -0.0980135 -0.0383499 All traits
Hematology lnCVR 0.0217865 -0.0165045 0.0600776 All traits Hematology lnCVR 0.0217865 -0.0165045 0.0600776 All traits
Heart lnCVR 0.0183839 -0.0128375 0.0496053 All traits Heart lnCVR 0.0183839 -0.0128375 0.0496053 All traits
Hearing lnCVR 0.0157302 -0.0111999 0.0426603 All traits Hearing lnCVR 0.0157302 -0.0111999 0.0426603 All traits
Eye lnCVR -0.0817932 -0.1476821 -0.0159043 All traits Eye lnCVR -0.0817932 -0.1476821 -0.0159043 All traits
All lnCVR 0.0046553 -0.0086242 0.0179348 All traits All lnCVR 0.0046553 -0.0086242 0.0179348 All traits
Behaviour lnVR -0.0178345 -0.0739862 0.0383172 All traits Behaviour lnVR -0.0178345 -0.0739862 0.0383172 All traits
Morphology lnVR 0.1514171 0.0818826 0.2209516 All traits Morphology lnVR 0.1514171 0.0818826 0.2209516 All traits
Metabolism lnVR 0.0910609 -0.0337688 0.2158905 All traits Metabolism lnVR 0.0910609 -0.0337688 0.2158905 All traits
Physiology lnVR 0.0359821 -0.0277944 0.0997585 All traits Physiology lnVR 0.0359821 -0.0277944 0.0997585 All traits
Immunology lnVR -0.1112382 -0.1622150 -0.0602615 All traits Immunology lnVR -0.1112382 -0.1622150 -0.0602615 All traits
Hematology lnVR 0.0802111 0.0315390 0.1288831 All traits Hematology lnVR 0.0802111 0.0315390 0.1288831 All traits
Heart lnVR -0.0050810 -0.0357003 0.0255383 All traits Heart lnVR -0.0050810 -0.0357003 0.0255383 All traits
Hearing lnVR 0.0106858 -0.0230440 0.0444155 All traits Hearing lnVR 0.0106858 -0.0230440 0.0444155 All traits
Eye lnVR -0.0744497 -0.1381380 -0.0107614 All traits Eye lnVR -0.0744497 -0.1381380 -0.0107614 All traits
All lnVR 0.0156634 -0.0077457 0.0390726 All traits All lnVR 0.0156634 -0.0077457 0.0390726 All traits
Behaviour lnRR -0.0199206 -0.0634388 0.0235976 All traits Behaviour lnRR -0.0199206 -0.0634388 0.0235976 All traits
Morphology lnRR 0.0678160 0.0072225 0.1284095 All traits Morphology lnRR 0.0678160 0.0072225 0.1284095 All traits
Metabolism lnRR 0.1422577 0.0364352 0.2480801 All traits Metabolism lnRR 0.1422577 0.0364352 0.2480801 All traits
Physiology lnRR 0.0163695 -0.0443364 0.0770753 All traits Physiology lnRR 0.0163695 -0.0443364 0.0770753 All traits
Immunology lnRR -0.0574840 -0.1074213 -0.0075466 All traits Immunology lnRR -0.0574840 -0.1074213 -0.0075466 All traits
Hematology lnRR 0.0388537 -0.0024274 0.0801348 All traits Hematology lnRR 0.0388537 -0.0024274 0.0801348 All traits
Heart lnRR -0.0048933 -0.0324240 0.0226374 All traits Heart lnRR -0.0048933 -0.0324240 0.0226374 All traits
Hearing lnRR -0.0132366 -0.0335982 0.0071251 All traits Hearing lnRR -0.0132366 -0.0335982 0.0071251 All traits
Eye lnRR 0.0091186 0.0012071 0.0170302 All traits Eye lnRR 0.0091186 0.0012071 0.0170302 All traits
All lnRR 0.0124332 -0.0061474 0.0310138 All traits All lnRR 0.0124332 -0.0061474 0.0310138 All traits

Plot FIGURE 4 (Second-order meta analysis results)

Preparation: Sub-Plot for Figure 3: all traits

Metameta_Fig3_alltraits <- overall4 %>%

  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = 0.1, show.legend = FALSE) +
  geom_point(aes(shape = parameter), fill = 'black',
             color = 'black', size = 2.2, 
             show.legend = FALSE) +
  scale_x_continuous(limits=c(-0.24, 0.25), 
                     breaks = c(-0.2, -0.1, 0, 0.1, 0.2), 
                     name='Effect size') +
  geom_vline(xintercept=0, 
             color='black', 
             linetype='dashed')+
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = 23),
             scales= 'free', 
             space='free')+
  theme_bw()+
  theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_text(size = 12),
        strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
        text = element_text(size = 14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_blank(),
      axis.title.y = element_blank())

#Metameta_Fig3_alltraits 

Figure 4B: Prepare data for traits with CI not overlapping 0

create column with 1= different from zero, 0= zero included in CI Male-biased (significant) traits

meta.male.plot3.sig <- metacombo %>% 
        mutate(sigCVR = ifelse(lnCVR_lower > 0, 1, 0),
    sigVR = ifelse(lnVR_lower > 0, 1, 0),
    sigRR = ifelse(lnRR_lower > 0, 1, 0))

#Significant subset for lnCVR
metacombo_male.plot3.CVR <- meta.male.plot3.sig %>%
 filter(sigCVR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_male.plot3.CVR.all <- meta.male.plot3.sig %>%
 filter(sigCVR == 1) %>%
 nest()

#Significant subset for lnVR
metacombo_male.plot3.VR <- meta.male.plot3.sig %>%
 filter(sigVR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_male.plot3.VR.all <- meta.male.plot3.sig %>%
 filter(sigVR == 1) %>%
 nest()

#Significant subset for lnRR
metacombo_male.plot3.RR <- meta.male.plot3.sig %>%
 filter(sigRR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_male.plot3.RR.all <- meta.male.plot3.sig %>%
 filter(sigRR == 1) %>%
 nest()

# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate 

plot3.male.meta.CVR <- metacombo_male.plot3.CVR %>% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.VR <- metacombo_male.plot3.VR %>% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.RR <- metacombo_male.plot3.RR %>% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )    

# Across all grouping terms #

plot3.male.meta.CVR.all <- metacombo_male.plot3.CVR.all %>% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.CVR.all <- plot3.male.meta.CVR.all %>% mutate(GroupingTerm = "All")

plot3.male.meta.VR.all <- metacombo_male.plot3.VR.all %>% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.VR.all <- plot3.male.meta.VR.all %>% mutate(GroupingTerm = "All")

plot3.male.meta.RR.all <- metacombo_male.plot3.RR.all %>% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.RR.all <- plot3.male.meta.RR.all %>% mutate(GroupingTerm = "All")

# Combine with separate grouping term results

plot3.male.meta.CVR <- bind_rows(plot3.male.meta.CVR, plot3.male.meta.CVR.all)
plot3.male.meta.VR <- bind_rows(plot3.male.meta.VR, plot3.male.meta.VR.all)
plot3.male.meta.RR <- bind_rows(plot3.male.meta.RR, plot3.male.meta.RR.all)


# **Re-structure data for each grouping term; delete un-used variables

plot3.male.meta.CVR.b <- as.data.frame(plot3.male.meta.CVR %>% group_by(GroupingTerm) %>%  
        mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)), 
        lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)] 
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.male.meta.CVR.b))   

plot3.male.meta.CVR.b <- bind_rows(plot3.male.meta.CVR.b, add.row.hearing) 
plot3.male.meta.CVR.b <- plot3.male.meta.CVR.b[order(plot3.male.meta.CVR.b$GroupingTerm),] 

plot3.male.meta.VR.b <- as.data.frame(plot3.male.meta.VR %>% group_by(GroupingTerm) %>%  
    mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)), 
    lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)] 
plot3.male.meta.VR.b <- plot3.male.meta.VR.b[order(plot3.male.meta.VR.b$GroupingTerm),] 

plot3.male.meta.RR.b <- as.data.frame(plot3.male.meta.RR %>% group_by(GroupingTerm) %>%  
    mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)), 
    lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)] 
plot3.male.meta.RR.b <- plot3.male.meta.RR.b[order(plot3.male.meta.RR.b$GroupingTerm),] 

overall.male.plot3 <- inner_join(plot3.male.meta.CVR.b, plot3.male.meta.VR.b) 
overall.male.plot3 <- inner_join(overall.male.plot3, plot3.male.meta.RR.b)

overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))

#add missing GroupingTerms for plot
overall.male.plot3 <- add_row(overall.male.plot3, GroupingTerm = "Behaviour")
overall.male.plot3 <- add_row(overall.male.plot3, GroupingTerm = "Immunology")
overall.male.plot3 <- add_row(overall.male.plot3, GroupingTerm = "Eye")

overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.male.plot3$GroupingTerm <- factor(overall.male.plot3$GroupingTerm, rev(levels(overall.male.plot3$GroupingTerm)))

Restructure MALE data for plotting

overall3.male.sig <- gather(overall.male.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)

lnCVR.ci <- overall3.male.sig  %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.male.sig  %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.male.sig  %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                 

overall4.male.sig <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.male.sig$label <- "CI not overlapping zero"

Plot Fig3 all significant results (CI not overlapping zero) for males

######

Metameta_Fig3_male.sig <- overall4.male.sig %>%
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = 0.1, show.legend = FALSE) +
  geom_point(aes(shape = parameter),
             fill = 'mediumaquamarine', color = 'mediumaquamarine', size = 2.2, 
               show.legend = FALSE) +
  scale_x_continuous(limits=c(0, 0.4), 
                     breaks = c(0, 0.3), 
                     name='Effect size') +
  geom_vline(xintercept=0, 
             color='black', 
             linetype='dashed')+
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = 23),
             scales= 'free', 
             space='free')+
  theme_bw()+
  theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_text(size = 12),
        strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
        text = element_text(size = 14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_blank(),
      axis.title.y = element_blank())

#Metameta_Fig3_male.sig

Female Figure, significant traits

Female Fig3 sig

Prepare data for traits with CI not overlapping 0 create column with 1= different from zero, 0= zero included in CI

# female-biased traits

meta.female.plot3.sig <- metacombo %>%
              mutate(sigCVR = ifelse(lnCVR_upper < 0, 1, 0),
              sigVR = ifelse(lnVR_upper < 0, 1, 0),
              sigRR = ifelse(lnRR_upper < 0, 1, 0))

#Significant subset for lnCVR

metacombo_female.plot3.CVR <- meta.female.plot3.sig %>%
filter(sigCVR == 1) %>%
group_by(GroupingTerm) %>%
nest()

metacombo_female.plot3.CVR.all <- meta.female.plot3.sig %>%
 filter(sigCVR == 1) %>%
 nest()

#Significant subset for lnVR

metacombo_female.plot3.VR <- meta.female.plot3.sig %>%
filter(sigVR == 1) %>%
group_by(GroupingTerm) %>%
nest()

metacombo_female.plot3.VR.all <- meta.female.plot3.sig %>%
 filter(sigVR == 1) %>%
 nest() 

#Significant subset for lnRR

metacombo_female.plot3.RR <- meta.female.plot3.sig %>%
filter(sigRR == 1) %>%
group_by(GroupingTerm) %>%
nest()

metacombo_female.plot3.RR.all <- meta.female.plot3.sig %>%
 filter(sigRR == 1) %>%
 nest()  

# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate

plot3.female.meta.CVR <- metacombo_female.plot3.CVR %>%
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96), 
                                 control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.female.meta.VR <- metacombo_female.plot3.VR %>%
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96), 
                           control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.female.meta.RR <- metacombo_female.plot3.RR %>%
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96), 
                                 control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )  

# Across all grouping terms #

plot3.female.meta.CVR.all <- metacombo_female.plot3.CVR.all %>% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.female.meta.CVR.all <- plot3.female.meta.CVR.all %>% mutate(GroupingTerm = "All")

plot3.female.meta.VR.all <- metacombo_female.plot3.VR.all %>% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.female.meta.VR.all <- plot3.female.meta.VR.all %>% mutate(GroupingTerm = "All")

plot3.female.meta.RR.all <- metacombo_female.plot3.RR.all %>% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.female.meta.RR.all <- plot3.female.meta.RR.all %>% mutate(GroupingTerm = "All")

# Combine with separate grouping term results

plot3.female.meta.CVR <- bind_rows(plot3.female.meta.CVR, plot3.female.meta.CVR.all)
plot3.female.meta.VR <- bind_rows(plot3.female.meta.VR, plot3.female.meta.VR.all)
plot3.female.meta.RR <- bind_rows(plot3.female.meta.RR, plot3.female.meta.RR.all)


# **Re-structure data for each grouping term; delete un-used variables

plot3.female.meta.CVR.b <- as.data.frame(plot3.female.meta.CVR %>% group_by(GroupingTerm) %>% 
                             mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)),
                             lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)]

add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.female.meta.CVR.b))   

plot3.female.meta.CVR.b <- bind_rows(plot3.female.meta.CVR.b, add.row.hearing)
plot3.female.meta.CVR.b <- plot3.female.meta.CVR.b[order(plot3.female.meta.CVR.b$GroupingTerm),]

plot3.female.meta.VR.b <- as.data.frame(plot3.female.meta.VR %>% group_by(GroupingTerm) %>% 
              mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)),
              lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)]

plot3.female.meta.VR.b <- plot3.female.meta.VR.b[order(plot3.female.meta.VR.b$GroupingTerm),]

plot3.female.meta.RR.b <- as.data.frame(plot3.female.meta.RR %>% group_by(GroupingTerm) %>% 
              mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)),
              lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)]

plot3.female.meta.RR.b <- plot3.female.meta.RR.b[order(plot3.female.meta.RR.b$GroupingTerm),]

overall.female.plot3 <- full_join(plot3.female.meta.CVR.b, plot3.female.meta.VR.b)
overall.female.plot3 <- full_join(overall.female.plot3, plot3.female.meta.RR.b)

overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, rev(levels(overall.female.plot3$GroupingTerm))) 

#add missing GroupingTerms for plot POTENTIALLY DELETE
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Morphology")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Metabolism")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Hematology")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Hearing")
#overall.female.plot3 <- add_row(overall.female.plot3, GroupingTerm = "Eye")

#overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
#overall.female.plot3$GroupingTerm <- factor(overall.female.plot3$GroupingTerm, rev(levels(overall.female.plot3$GroupingTerm))) 

Restructure data for plotting

overall3.female.sig <- gather(overall.female.plot3, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)

lnCVR.ci <- overall3.female.sig  %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.female.sig  %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.female.sig  %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                                                                   

overall4.female.sig <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.female.sig$label <- "CI not overlapping zero"

Plot Fig3 all significant results (CI not overlapping zero, female )

Metameta_Fig3_female.sig <- overall4.female.sig %>%
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low,
                     xmax = ci.high),
                     height = 0.1, show.legend = FALSE) +
  geom_point(aes(shape = parameter),
             fill = 'salmon1', color = 'salmon1', size = 2.2,
             show.legend = FALSE) +
  scale_x_continuous(limits=c(-0.4, 0),
                     breaks = c(-0.3 ,0),
                     name='Effect size') +
  geom_vline(xintercept=0,
             color='black',
             linetype='dashed')+
  facet_grid(cols = vars(parameter), #rows = vars(label),
             #labeller = label_wrap_gen(width = 23),
             scales= 'free',
             space='free')+
  theme_bw()+
  theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)),
                strip.text.x = element_text(size = 12),
        strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
        text = element_text(size = 14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(),
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(),
        legend.title = element_blank(),
        axis.title.x = element_blank(),
                axis.title.y = element_blank())

#Metameta_Fig3_female.sig

Fig4 C >10%

Prepare data for traits with m/f difference > 10%

create column with 1= larger, 0= diff not larger than 10%

Male Fig 3 > 10% (male biased traits)

meta.male.plot3.perc <- metacombo %>% 
        mutate(percCVR = ifelse(lnCVR > log (11/10), 1, 0),         
    percVR = ifelse(lnVR > log (11/10), 1, 0),
    percRR = ifelse(lnRR > log (11/10), 1, 0))

#Significant subset for lnCVR
metacombo_male.plot3.CVR.perc <- meta.male.plot3.perc %>%
 filter(percCVR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_male.plot3.CVR.perc.all <- meta.male.plot3.perc %>%
 filter(percCVR == 1) %>%
 nest()

#Significant subset for lnVR
metacombo_male.plot3.VR.perc <- meta.male.plot3.perc %>%
 filter(percVR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_male.plot3.VR.perc.all <- meta.male.plot3.perc %>%
 filter(percVR == 1) %>%
 nest()

#Significant subset for lnRR
metacombo_male.plot3.RR.perc <- meta.male.plot3.perc %>%
 filter(percRR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_male.plot3.RR.perc.all <- meta.male.plot3.perc %>%
 filter(percRR == 1) %>%
 nest()


# **Final fixed effects meta-analyses within grouping terms and across grouping terms, with SE of the estimate 

plot3.male.meta.CVR.perc <- metacombo_male.plot3.CVR.perc %>% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.VR.perc <- metacombo_male.plot3.VR.perc %>% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.RR.perc <- metacombo_male.plot3.RR.perc %>% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

# Across all grouping terms #

plot3.male.meta.CVR.perc.all <- metacombo_male.plot3.CVR.perc.all %>% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.CVR.perc.all <- plot3.male.meta.CVR.perc.all %>% mutate(GroupingTerm = "All")

plot3.male.meta.VR.perc.all <- metacombo_male.plot3.VR.perc.all %>% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.VR.perc.all <- plot3.male.meta.VR.perc.all %>% mutate(GroupingTerm = "All")

plot3.male.meta.RR.perc.all <- metacombo_male.plot3.RR.perc.all %>% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.male.meta.RR.perc.all <- plot3.male.meta.RR.perc.all %>% mutate(GroupingTerm = "All")

# Combine with separate grouping term results

plot3.male.meta.CVR.perc <- bind_rows(plot3.male.meta.CVR.perc, plot3.male.meta.CVR.perc.all)
plot3.male.meta.VR.perc <- bind_rows(plot3.male.meta.VR.perc, plot3.male.meta.VR.perc.all)
plot3.male.meta.RR.perc <- bind_rows(plot3.male.meta.RR.perc, plot3.male.meta.RR.perc.all)


# **Re-structure data for each grouping term; delete un-used variables: "Hearing missing for all 3 parameters"

plot3.male.meta.CVR.perc.b <- as.data.frame(plot3.male.meta.CVR.perc %>% group_by(GroupingTerm) %>%  
        mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)), 
        lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)] 
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.male.meta.CVR.perc.b))
plot3.male.meta.CVR.perc.b <- rbind(plot3.male.meta.CVR.perc.b, add.row.hearing) 
plot3.male.meta.CVR.perc.b <- plot3.male.meta.CVR.perc.b[order(plot3.male.meta.CVR.perc.b$GroupingTerm),] 

plot3.male.meta.VR.perc.b <- as.data.frame(plot3.male.meta.VR.perc %>% group_by(GroupingTerm) %>%  
    mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)), 
    lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)] 
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.male.meta.VR.perc.b))
plot3.male.meta.VR.perc.b <- rbind(plot3.male.meta.VR.perc.b, add.row.hearing) 
plot3.male.meta.VR.perc.b <- plot3.male.meta.VR.perc.b[order(plot3.male.meta.VR.perc.b$GroupingTerm),] 

plot3.male.meta.RR.perc.b <- as.data.frame(plot3.male.meta.RR.perc %>% group_by(GroupingTerm) %>%  
    mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)), 
    lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)] 
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% 
  setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b <- rbind(plot3.male.meta.RR.perc.b, add.row.hearing)

add.row.eye <- as.data.frame(t(c("Eye", NA, NA, NA, NA))) %>% 
  setNames(names(plot3.male.meta.RR.perc.b))
plot3.male.meta.RR.perc.b <- rbind(plot3.male.meta.RR.perc.b, add.row.eye)

plot3.male.meta.RR.perc.b <- plot3.male.meta.RR.perc.b[order(plot3.male.meta.RR.perc.b$GroupingTerm),] 

overall.male.plot3.perc <- full_join(plot3.male.meta.CVR.perc.b, plot3.male.meta.VR.perc.b) 
overall.male.plot3.perc <- full_join(overall.male.plot3.perc, plot3.male.meta.RR.perc.b)


overall.male.plot3.perc$GroupingTerm <- factor(overall.male.plot3.perc$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.male.plot3.perc$GroupingTerm <- factor(overall.male.plot3.perc$GroupingTerm, rev(levels(overall.male.plot3.perc$GroupingTerm)))

Restructure data for plotting : Male biased, 10% difference

overall3.perc <- gather(overall.male.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)

lnCVR.ci <- overall3.perc %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.perc  %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.perc  %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                 

overall4.male.perc <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.male.perc$label <- "Sex difference in m/f ratios > 10%"

overall4.male.perc$value <- as.numeric(overall4.male.perc$value)
overall4.male.perc$ci.low  <- as.numeric(overall4.male.perc$ci.low)
overall4.male.perc$ci.high <- as.numeric(overall4.male.perc$ci.high)

Plot Fig3 all >10% difference (male bias)

Metameta_Fig3_male.perc <- overall4.male.perc %>% #filter(., GroupingTerm != "Hearing") %>%
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = 0.1, show.legend = FALSE) +
  geom_point(aes(shape = parameter,
             fill = parameter), color = 'mediumaquamarine', size = 2.2, 
             show.legend = FALSE) +
  scale_x_continuous(limits=c(-0.2, 0.62), 
                     breaks = c(0, 0.3), 
                     name='Effect size') +
  geom_vline(xintercept=0, 
             color='black', 
             linetype='dashed')+
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = 23),
             scales= 'free', 
             space='free')+
  theme_bw()+
  theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
        text = element_text(size = 14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_text(hjust = 0.5, size = 14),
      axis.title.y = element_blank())

# Metameta_Fig3_male.perc

Female Fig 3 >10%

meta.plot3.perc <- metacombo %>% 
        mutate(percCVR = ifelse(lnCVR < log (9/10), 1, 0),          
    percVR = ifelse(lnVR < log (9/10), 1, 0),
    percRR = ifelse(lnRR < log (9/10), 1, 0))

#Significant subset for lnCVR
metacombo_plot3.CVR.perc <- meta.plot3.perc %>%
 filter(percCVR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_plot3.CVR.perc.all <- meta.plot3.perc %>%
 filter(percCVR == 1) %>%
 nest()

#Significant subset for lnVR
metacombo_plot3.VR.perc <- meta.plot3.perc %>%
 filter(percVR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_plot3.VR.perc.all <- meta.plot3.perc %>%
 filter(percVR == 1) %>%
 nest()

#Significant subset for lnRR
metacombo_plot3.RR.perc <- meta.plot3.perc %>%
 filter(percRR == 1) %>%
 group_by(GroupingTerm) %>%
 nest()

metacombo_plot3.RR.perc.all <- meta.plot3.perc %>%
 filter(percRR == 1) %>%
 nest()


# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate 

plot3.meta.CVR.perc <- metacombo_plot3.CVR.perc %>% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.meta.VR.perc <- metacombo_plot3.VR.perc %>% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.meta.RR.perc <- metacombo_plot3.RR.perc %>% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

# Across all grouping terms #

plot3.meta.CVR.perc.all <- metacombo_plot3.CVR.perc.all %>% 
  mutate(model_lnCVR = map(data, ~ metafor::rma.uni(yi = .x$lnCVR, sei = (.x$lnCVR_upper - .x$lnCVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.meta.CVR.perc.all <- plot3.meta.CVR.perc.all %>% mutate(GroupingTerm = "All")

plot3.meta.VR.perc.all <- metacombo_plot3.VR.perc.all %>% 
  mutate(model_lnVR = map(data, ~ metafor::rma.uni(yi = .x$lnVR, sei = (.x$lnVR_upper - .x$lnVR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.meta.VR.perc.all <- plot3.meta.VR.perc.all %>% mutate(GroupingTerm = "All")

plot3.meta.RR.perc.all <- metacombo_plot3.RR.perc.all %>% 
  mutate(model_lnRR = map(data, ~ metafor::rma.uni(yi = .x$lnRR, sei = (.x$lnRR_upper - .x$lnRR_lower)/ (2*1.96),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), verbose=F)) )

plot3.meta.RR.perc.all <- plot3.meta.RR.perc.all %>% mutate(GroupingTerm = "All")

# Combine with separate grouping term results

plot3.meta.CVR.perc <- bind_rows(plot3.meta.CVR.perc, plot3.meta.CVR.perc.all)
plot3.meta.VR.perc <- bind_rows(plot3.meta.VR.perc, plot3.meta.VR.perc.all)
plot3.meta.RR.perc <- bind_rows(plot3.meta.RR.perc, plot3.meta.RR.perc.all)


# **Re-structure data for each grouping term; delete un-used variables: "Hearing missing for all 3 parameters"

plot3.meta.CVR.perc.b <- as.data.frame(plot3.meta.CVR.perc %>% group_by(GroupingTerm) %>%  
        mutate(lnCVR = map_dbl(model_lnCVR, pluck(2)), lnCVR_lower = map_dbl(model_lnCVR, pluck(6)), 
        lnCVR_upper =map_dbl(model_lnCVR, pluck(7)), lnCVR_se =map_dbl(model_lnCVR, pluck(3))) )[, c(1,4:7)] 
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.meta.CVR.perc.b))
plot3.meta.CVR.perc.b <- rbind(plot3.meta.CVR.perc.b, add.row.hearing) 
plot3.meta.CVR.perc.b <- plot3.meta.CVR.perc.b[order(plot3.meta.CVR.perc.b$GroupingTerm),] 

plot3.meta.VR.perc.b <- as.data.frame(plot3.meta.VR.perc %>% group_by(GroupingTerm) %>%  
    mutate(lnVR = map_dbl(model_lnVR, pluck(2)), lnVR_lower = map_dbl(model_lnVR, pluck(6)), 
    lnVR_upper =map_dbl(model_lnVR, pluck(7)), lnVR_se =map_dbl(model_lnVR, pluck(3))) )[, c(1,4:7)] 
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.meta.VR.perc.b))
plot3.meta.VR.perc.b <- rbind(plot3.meta.VR.perc.b, add.row.hearing) 
plot3.meta.VR.perc.b <- plot3.meta.VR.perc.b[order(plot3.meta.VR.perc.b$GroupingTerm),] 

plot3.meta.RR.perc.b <- as.data.frame(plot3.meta.RR.perc %>% group_by(GroupingTerm) %>%  
    mutate(lnRR = map_dbl(model_lnRR, pluck(2)), lnRR_lower = map_dbl(model_lnRR, pluck(6)), 
    lnRR_upper =map_dbl(model_lnRR, pluck(7)), lnRR_se =map_dbl(model_lnRR, pluck(3))) )[, c(1,4:7)] 
add.row.hearing <- as.data.frame(t(c("Hearing", NA, NA, NA, NA))) %>% setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b <- rbind(plot3.meta.RR.perc.b, add.row.hearing) 
add.row.hematology <- as.data.frame(t(c("Hematology", NA, NA, NA, NA))) %>% 
  setNames(names(plot3.meta.RR.perc.b))
plot3.meta.RR.perc.b <- rbind(plot3.meta.RR.perc.b, add.row.hematology)


plot3.meta.RR.perc.b <- plot3.meta.RR.perc.b[order(plot3.meta.RR.perc.b$GroupingTerm),] 

overall.plot3.perc <- full_join(plot3.meta.CVR.perc.b, plot3.meta.VR.perc.b) 
overall.plot3.perc <- full_join(overall.plot3.perc, plot3.meta.RR.perc.b)


overall.plot3.perc$GroupingTerm <- factor(overall.plot3.perc$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye", "All") )
overall.plot3.perc$GroupingTerm <- factor(overall.plot3.perc$GroupingTerm, rev(levels(overall.plot3.perc$GroupingTerm)))

Restructure data for plotting

Female bias, 10 percent difference

overall3.perc <- gather(overall.plot3.perc, parameter, value, c(lnCVR, lnVR, lnRR), factor_key= TRUE)

lnCVR.ci <- overall3.perc %>% filter(parameter == "lnCVR") %>% mutate(ci.low = lnCVR_lower, ci.high = lnCVR_upper)
lnVR.ci <- overall3.perc  %>% filter(parameter == "lnVR") %>% mutate(ci.low = lnVR_lower, ci.high = lnVR_upper)
lnRR.ci <- overall3.perc  %>% filter(parameter == "lnRR") %>% mutate(ci.low = lnRR_lower, ci.high = lnRR_upper)                 

overall4.perc <- bind_rows(lnCVR.ci, lnVR.ci, lnRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)

overall4.perc$label <- "Sex difference in m/f ratios > 10%"

overall4.perc$value <- as.numeric(overall4.perc$value)
overall4.perc$ci.low  <- as.numeric(overall4.perc$ci.low)
overall4.perc$ci.high <- as.numeric(overall4.perc$ci.high)

Plot Fig3 all >10% difference (female)

Metameta_Fig3_female.perc <- overall4.perc %>% 
  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = 0.1, show.legend = FALSE) +
  geom_point(aes(shape = parameter),
             fill = 'salmon1', color = 'salmon1', size = 2.2, 
             show.legend = FALSE) +

#scale_shape_manual(values = 

  scale_x_continuous(limits=c(-0.53, 0.2), 
                     breaks = c(-0.3, 0), 
                     name='Effect size') +
  geom_vline(xintercept=0, 
             color='black', 
             linetype='dashed')+
  facet_grid(cols = vars(parameter), #rows = vars(label),
             #labeller = label_wrap_gen(width = 23),
             scales= 'free', 
             space='free')+
  theme_bw()+
  theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_blank(),
        strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
        text = element_text(size = 14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_text(hjust = 0.5, size = 14),
      axis.title.y = element_blank())


#Metameta_Fig3_female.perc

Plot Fig3 all plots combined

library(ggpubr)
Fig3.bottom <- ggarrange(Metameta_Fig3_female.sig, Metameta_Fig3_male.sig, Metameta_Fig3_female.perc, Metameta_Fig3_male.perc, 
           ncol = 2, nrow = 2, widths = c(1, 1.20), heights = c(1, 1))

Fig3 <- ggarrange(Metameta_Fig3_alltraits, Fig3.bottom, ncol = 1, nrow = 2, heights = c(1.4, 2.5))
Fig3

#ggsave("Fig3.pdf", plot = Fig3, width = 9, height = 6) 

Heterogeneity

FIGURE 4 (Second-order meta analysis on heterogeneity)

Create matrix to store results for all traits

results.allhetero.grouping <- as.data.frame(cbind(c(1:n), matrix(rep(0, n*30), ncol = 30))) 
names(results.allhetero.grouping) <- c("id", "sigma2_strain.CVR", "sigma2_center.CVR", "sigma2_error.CVR", "s.nlevels.strain.CVR", 
    "s.nlevels.center.CVR", "s.nlevels.error.CVR", "sigma2_strain.VR", "sigma2_center.VR", "sigma2_error.VR", "s.nlevels.strain.VR", 
    "s.nlevels.center.VR", "s.nlevels.error.VR", "sigma2_strain.RR", "sigma2_center.RR", "sigma2_error.RR", "s.nlevels.strain.RR", 
    "s.nlevels.center.RR", "s.nlevels.error.RR", "lnCVR", "lnCVR_lower", "lnCVR_upper", "lnCVR_se", "lnVR", "lnVR_lower", "lnVR_upper", 
    "lnVR_se", "lnRR", "lnRR_lower", "lnRR_upper" ,"lnRR_se")

LOOP

Parameters to extract from metafor (sigma2’s, s.nlevels)

for(t in 1:n) {
  tryCatch({
    
    data_par_age <- data_subset_parameterid_individual_by_age(data, t, age_min = 0, age_center = 100)
    
    population_stats <- calculate_population_stats(data_par_age)
    
    results <- create_meta_analysis_effect_sizes(population_stats)
    
    # lnCVR, logaritm of the ratio of male and female coefficients of variance 
   
    cvr. <- metafor::rma.mv(yi = effect_size_CVR, V = sample_variance_CVR, random = list(~1| strain_name, ~1|production_center,    
                                ~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
    results.allhetero.grouping[t, 2] <- cvr.$sigma2[1]
    results.allhetero.grouping[t, 3] <- cvr.$sigma2[2]
    results.allhetero.grouping[t, 4] <- cvr.$sigma2[3]
    results.allhetero.grouping[t, 5] <- cvr.$s.nlevels[1]
    results.allhetero.grouping[t, 6] <- cvr.$s.nlevels[2]
    results.allhetero.grouping[t, 7] <- cvr.$s.nlevels[3]
     results.allhetero.grouping[t, 20] <- cvr.$b
     results.allhetero.grouping[t, 21] <- cvr.$ci.lb
     results.allhetero.grouping[t, 22] <- cvr.$ci.ub
     results.allhetero.grouping[t, 23] <- cvr.$se
    
    # lnVR, male to female variability ratio (logarithm of male and female standard deviations)
    
    vr. <- metafor::rma.mv(yi = effect_size_VR, V = sample_variance_VR, random = list(~1| strain_name, ~1|production_center,    
                                ~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
    results.allhetero.grouping[t, 8] <- vr.$sigma2[1]
    results.allhetero.grouping[t, 9] <- vr.$sigma2[2]
    results.allhetero.grouping[t, 10] <- vr.$sigma2[3]
    results.allhetero.grouping[t, 11] <- vr.$s.nlevels[1]
    results.allhetero.grouping[t, 12] <- vr.$s.nlevels[2]
    results.allhetero.grouping[t, 13] <- vr.$s.nlevels[3]
     results.allhetero.grouping[t, 24] <- vr.$b
     results.allhetero.grouping[t, 25] <- vr.$ci.lb
     results.allhetero.grouping[t, 26] <- vr.$ci.ub
     results.allhetero.grouping[t, 27] <- vr.$se
    
    # lnRR, response ratio (logarithm of male and female means)
    
    rr. <- metafor::rma.mv(yi = effect_size_RR, V = sample_variance_RR, random = list(~1| strain_name, ~1|production_center,    
                                ~1|err), control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 1000), data = results)
    results.allhetero.grouping[t, 14] <- rr.$sigma2[1]
    results.allhetero.grouping[t, 15] <- rr.$sigma2[2]
    results.allhetero.grouping[t, 16] <- rr.$sigma2[3]
    results.allhetero.grouping[t, 17] <- rr.$s.nlevels[1]
    results.allhetero.grouping[t, 18] <- rr.$s.nlevels[2]
    results.allhetero.grouping[t, 19] <- rr.$s.nlevels[3]
     results.allhetero.grouping[t, 28] <- rr.$b
     results.allhetero.grouping[t, 29] <- rr.$ci.lb
     results.allhetero.grouping[t, 30] <- rr.$ci.ub
     results.allhetero.grouping[t, 31] <- rr.$se
    
  }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")})
}
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : Optimizer (optim) did not achieve convergence (convergence = 10). 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y' 
## ERROR : NA/NaN/Inf in 'y'

Exclude traits

results.allhetero.grouping2 <- results.allhetero.grouping[results.allhetero.grouping$s.nlevels.strain.VR != 0, ]
nrow(results.allhetero.grouping2) #218
## [1] 223

Merge data sets containing metafor results with procedure etc. names

#procedures <- read.csv("../procedures.csv")

results.allhetero.grouping2$parameter_group <- data$parameter_group[match(results.allhetero.grouping2$id, data$id)]
results.allhetero.grouping2$procedure <- data$procedure_name[match(results.allhetero.grouping2$id, data$id)]
 
results.allhetero.grouping2$GroupingTerm <-  procedures$GroupingTerm[match(results.allhetero.grouping2$procedure, procedures$procedure)]
results.allhetero.grouping2$parameter_name <- data$parameter_name[match(results.allhetero.grouping2$id, data$id)]

Dealing with correlated parameters

metahetero1 <- results.allhetero.grouping2 
length(unique(metahetero1$procedure)) #18
## [1] 19
length(unique(metahetero1$GroupingTerm)) #9 
## [1] 9
length(unique(metahetero1$parameter_group)) # 149 levels: one more tha in effect size alanlysis, see above; CHECK!
## [1] 152
length(unique(metahetero1$parameter_name)) #218
## [1] 223
# Count of number of parameter names (correlated sub-traits) in each parameter group (par_group_size) 

metahetero1b <-
  metahetero1 %>%
  group_by(parameter_group) %>% 
  mutate(par_group_size = n_distinct(parameter_name)) 

metahetero1$par_group_size <- metahetero1b$par_group_size[match(metahetero1$parameter_group, metahetero1b$parameter_group)]

#Create subsets with > 1 count (par_group_size > 1) 

metahetero1_sub <- subset(metahetero1, par_group_size > 1) # 90 observations  
str(metahetero1_sub)
## 'data.frame':    92 obs. of  36 variables:
##  $ id                  : num  1 2 3 4 5 17 18 19 33 34 ...
##  $ sigma2_strain.CVR   : num  3.83e-03 1.09e-14 6.56e-03 4.85e-03 1.55e-10 ...
##  $ sigma2_center.CVR   : num  6.59e-15 6.78e-03 6.02e-09 2.60e-09 2.14e-02 ...
##  $ sigma2_error.CVR    : num  4.07e-11 8.57e-15 4.23e-03 1.46e-02 1.54e-03 ...
##  $ s.nlevels.strain.CVR: num  6 6 6 6 6 5 5 5 5 6 ...
##  $ s.nlevels.center.CVR: num  7 10 10 10 7 4 4 4 4 5 ...
##  $ s.nlevels.error.CVR : num  9 13 13 13 9 6 6 6 6 7 ...
##  $ sigma2_strain.VR    : num  7.60e-04 3.96e-12 3.55e-03 2.48e-03 1.06e-09 ...
##  $ sigma2_center.VR    : num  9.22e-11 1.64e-10 3.42e-10 3.26e-10 1.53e-02 ...
##  $ sigma2_error.VR     : num  0 0.006805 0.005798 0.016756 0.000245 ...
##  $ s.nlevels.strain.VR : num  6 6 6 6 6 5 5 5 5 6 ...
##  $ s.nlevels.center.VR : num  7 10 10 10 7 4 4 4 4 5 ...
##  $ s.nlevels.error.VR  : num  9 13 13 13 9 6 6 6 6 7 ...
##  $ sigma2_strain.RR    : num  1.50e-03 1.07e-11 1.92e-03 6.74e-04 0.00 ...
##  $ sigma2_center.RR    : num  6.67e-12 6.85e-03 1.38e-11 1.37e-04 9.43e-04 ...
##  $ sigma2_error.RR     : num  1.25e-13 3.00e-14 0.00 5.04e-11 1.12e-11 ...
##  $ s.nlevels.strain.RR : num  6 6 6 6 6 5 5 5 5 6 ...
##  $ s.nlevels.center.RR : num  7 10 10 10 7 4 4 4 4 5 ...
##  $ s.nlevels.error.RR  : num  9 13 13 13 9 6 6 6 6 7 ...
##  $ lnCVR               : num  0.0161 0.1353 0.066 -0.0517 -0.0781 ...
##  $ lnCVR_lower         : num  -0.0479 0.0551 -0.0181 -0.1464 -0.1949 ...
##  $ lnCVR_upper         : num  0.0801 0.2155 0.15 0.0429 0.0387 ...
##  $ lnCVR_se            : num  0.0327 0.0409 0.0429 0.0483 0.0596 ...
##  $ lnVR                : num  0.011 0.0449 0.023 -0.0487 -0.0523 ...
##  $ lnVR_lower          : num  -0.02836 -0.00751 -0.04854 -0.13647 -0.15025 ...
##  $ lnVR_upper          : num  0.0504 0.0972 0.0945 0.0391 0.0456 ...
##  $ lnVR_se             : num  0.0201 0.0267 0.0365 0.0448 0.05 ...
##  $ lnRR                : num  -0.00732 -0.06406 -0.03473 0.00518 0.02602 ...
##  $ lnRR_lower          : num  -0.0425 -0.1388 -0.0743 -0.0195 0.0012 ...
##  $ lnRR_upper          : num  0.02783 0.01063 0.00484 0.02983 0.05085 ...
##  $ lnRR_se             : num  0.0179 0.0381 0.0202 0.0126 0.0127 ...
##  $ parameter_group     : Factor w/ 161 levels "12khz-evoked abr threshold",..: 126 126 126 126 126 12 12 12 26 27 ...
##  $ procedure           : chr  "Acoustic Startle and Pre-pulse Inhibition (PPI)" "Acoustic Startle and Pre-pulse Inhibition (PPI)" "Acoustic Startle and Pre-pulse Inhibition (PPI)" "Acoustic Startle and Pre-pulse Inhibition (PPI)" ...
##  $ GroupingTerm        : Factor w/ 9 levels "Behaviour","Eye",..: 1 1 1 1 1 6 6 6 6 6 ...
##  $ parameter_name      : chr  "% pre-pulse inhibition - global" "% pre-pulse inhibition - ppi1" "% pre-pulse inhibition - ppi2" "% pre-pulse inhibition - ppi3" ...
##  $ par_group_size      : int  5 5 5 5 5 4 4 4 6 7 ...
# metahetero1_sub$sampleSize <- as.numeric(metahetero1_sub$sampleSize) #from previous analysis? don't think is used: : delete in final version

# Nest data

n_count. <- metahetero1_sub %>% 
  group_by(parameter_group) %>% 
  #mutate(raw_N = sum(sampleSize)) %>%  #don't think is necessary: delete in final version
  nest()

# meta-analysis preparation

model_count. <- n_count. %>% 
  mutate(model_lnRR = map(data, ~ robu(.x$lnRR ~ 1, data= .x, studynum= .x$id, modelweights = c("CORR"), rho = 0.8, 
                                                small = TRUE, var.eff.size= (.x$lnRR_se)^2 )),
  model_lnVR = map(data, ~ robu(.x$lnVR ~ 1, data= .x, studynum= .x$id, modelweights = c("CORR"), rho = 0.8, 
                                                small = TRUE, var.eff.size= (.x$lnVR_se)^2 )),
  model_lnCVR = map(data, ~ robu(.x$lnCVR ~ 1, data= .x, studynum= .x$id, modelweights = c("CORR"), rho = 0.8, 
                                                small = TRUE, var.eff.size= (.x$lnCVR_se)^2 ))) 


#Robumeta object details:
#str(model_count.$model_lnCVR[[1]])

## *Perform meta-analyses on correlated sub-traits, using robumeta

# Shinichi: We think we want to use these for further analyses:
# residual variance: as.numeric(robu_fit$mod_info$term1)     (same as 'mod_info$tau.sq')
# sample size: robu_fit$N

## **Extract and save parameter estimates 

count_fun. <- function(mod_sub)
  return(c(as.numeric(mod_sub$mod_info$term1), mod_sub$N) )  

robusub_RR. <- model_count. %>% 
  transmute(parameter_group, estimatelnRR = map(model_lnRR, count_fun.)) %>% 
  mutate(r = map(estimatelnRR, ~ data.frame(t(.)))) %>%
  unnest(r) %>%
  select(-estimatelnRR) %>%
  purrr::set_names(c("parameter_group","var.RR","N.RR"))

robusub_CVR. <- model_count. %>% 
  transmute(parameter_group, estimatelnCVR = map(model_lnCVR, count_fun.)) %>% 
  mutate(r = map(estimatelnCVR, ~ data.frame(t(.)))) %>%
  unnest(r) %>%
  select(-estimatelnCVR) %>%
  purrr::set_names(c("parameter_group","var.CVR","N.CVR"))

robusub_VR. <- model_count. %>% 
  transmute(parameter_group, estimatelnVR = map(model_lnVR, count_fun.)) %>% 
  mutate(r = map(estimatelnVR, ~ data.frame(t(.)))) %>%
  unnest(r) %>%
  select(-estimatelnVR) %>%
  purrr::set_names(c("parameter_group","var.VR","N.VR"))

robu_all. <- full_join(robusub_CVR., robusub_VR.) %>% full_join(., robusub_RR.)

Merge the two data sets (the new [robu_all.] and the initial [uncorrelated sub-traits with count = 1])

In this step, we
1) merge the N from robumeta and the N from metafor (s.nlevels.error) together into the same columns (N.RR, N.VR, N.CVR) 2) calculate the total variance for metafor models as the sum of random effect variances and the residual error, then add in the same columns together with the residual variances from robumeta

metahetero_all <- metahetero1 %>% filter(par_group_size == 1) %>% as_tibble
metahetero_all$N.RR <- metahetero_all$s.nlevels.error.RR 
metahetero_all$N.CVR <- metahetero_all$s.nlevels.error.CVR 
metahetero_all$N.VR <- metahetero_all$s.nlevels.error.VR 
metahetero_all$var.RR <- log(sqrt(metahetero_all$sigma2_strain.RR + metahetero_all$sigma2_center.RR + metahetero_all$sigma2_error.RR))
metahetero_all$var.VR <- log(sqrt(metahetero_all$sigma2_strain.VR + metahetero_all$sigma2_center.VR + metahetero_all$sigma2_error.VR))
metahetero_all$var.CVR <- log(sqrt(metahetero_all$sigma2_strain.CVR + metahetero_all$sigma2_center.CVR + metahetero_all$sigma2_error.CVR))
#str(metahetero_all)
#str(robu_all.)

metahetero_all <- metahetero_all %>% mutate(var.RR = if_else(var.RR == -Inf, -7 ,var.RR),
                      var.VR = if_else(var.VR == -Inf, -5 ,var.VR),
                  var.CVR = if_else(var.CVR == -Inf, -6 ,var.CVR))

# **Combine data 
## Step1 
combinedmetahetero <- bind_rows(robu_all., metahetero_all)
#glimpse(combinedmetahetero)

# Steps 2&3

metacombohetero <- combinedmetahetero
metacombohetero$counts <- metahetero1$par_group_size[match( metacombohetero$parameter_group, metahetero1$parameter_group)]
metacombohetero$procedure2 <-metahetero1$procedure[match( metacombohetero$parameter_group, metahetero1$parameter_group)]
metacombohetero$GroupingTerm2 <-metahetero1$GroupingTerm[match( metacombohetero$parameter_group, metahetero1$parameter_group)]

# **Clean-up and rename 

metacombohetero <- metacombohetero[, c(1:7, 43:45)] 
names(metacombohetero)[9] <- "procedure" 
names(metacombohetero)[10] <- "GroupingTerm" 

Last step: meta-meta-analysis of heterogeneity

## *Perform meta-meta-analysis (3 for each of the 9 grouping terms: var.CVR, var.VR, var.RR) 

metacombohetero_final <- metacombohetero %>%
 group_by(GroupingTerm) %>%
 nest()

# **Final fixed effects meta-analyses within grouping terms, with SE of the estimate 

metacombohetero$var.CVR
##   [1]  0.0044991186  0.0000642816 -0.0144265163  0.0050872554 -0.0077958010
##   [6]  0.0035156022 -0.0016450671 -0.0008696892  0.0052878381  0.0001600556
##  [11] -0.0022444358 -0.0004257810  0.0589805219  0.0019663188 -0.0101574334
##  [16] -0.0001192722 -0.0004167067 -0.0065819186  0.0025887091  0.0011066115
##  [21]  0.0007330397 -2.6597488778 -2.7109304575 -2.4666374444 -2.4190625440
##  [26] -6.0000000000 -1.6765385765 -2.2211382571 -2.4803820009 -2.3163922698
##  [31] -2.1462407635 -1.4870666914 -2.4398886718 -2.6594232970 -1.8709366522
##  [36] -2.7492091777 -6.0000000000 -2.2096017872 -2.8372243141 -2.5966411739
##  [41] -2.0372635699 -1.7993498392 -1.3237500184 -2.4470323335 -2.6705595776
##  [46] -2.5640560844 -2.7773725290 -2.8522607171 -2.4179073905 -1.6170447612
##  [51] -2.3170574175 -2.1378338336 -2.3582684091 -2.1601625056 -2.3122643035
##  [56] -2.4773261880 -6.0000000000 -6.0000000000 -1.9777983292 -2.0066354936
##  [61] -1.9181629170 -2.3654858439 -2.6013619833 -2.4904490520 -2.2446924631
##  [66] -2.8284106787 -2.5460751840 -2.2939104814 -1.9775239093 -2.1993504724
##  [71] -1.5779079404 -2.4494899888 -2.0902610847 -3.0974151169 -2.8422362261
##  [76] -1.1383433892 -1.9342984119 -2.6060756341 -2.2943035742 -1.4466019118
##  [81] -2.2190572693 -1.7189444245 -1.8633043362 -6.0000000000 -6.0000000000
##  [86] -6.0000000000 -6.0000000000 -1.6067160546 -2.3012113787 -6.0000000000
##  [91] -1.6270233655 -2.7634753695 -2.1370173646 -2.5779218865 -2.7175087198
##  [96] -6.0000000000 -1.4037959533 -1.7018930341 -2.3344943000 -2.7273106400
## [101] -6.0000000000 -4.1046049569 -2.1822373277 -1.3326681362 -2.5871679179
## [106] -2.0174660672 -3.3272866024 -3.2077188205 -1.6370100682 -2.7261740396
## [111] -2.4227226560 -2.4766881954 -1.8894986680 -2.4175072222 -3.1804162368
## [116] -2.5174764339 -6.0000000000 -1.7884303244 -2.3647153111 -2.8157523923
## [121] -3.2648326014 -3.1758796266 -2.9972690061 -2.2693356188 -1.5123342000
## [126] -2.9715994935 -2.3388729551 -0.4645348140 -2.1908600686 -1.0349121159
## [131] -6.0000000000 -6.0000000000 -0.9481380899 -1.2489473343 -1.3160742631
## [136] -2.0331918626 -1.6265101179 -1.3064359147 -2.8298766900 -2.1791320199
## [141] -0.8300329578 -2.1426880967 -1.3016303060 -1.9384089540 -6.0000000000
## [146] -2.8430641339 -2.1164664090 -1.6584679154 -6.0000000000 -2.1808169436
## [151] -2.2525802925 -2.7297180428
heterog1 <- metacombohetero_final %>% 

  mutate(model_heteroCVR = map(data, ~ metafor::rma.uni(yi = .x$var.CVR, sei = sqrt(1 / 2*(.x$N.CVR - 1)),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 10000, stepadj=0.5), verbose=F)),
       model_heteroVR = map(data, ~ metafor::rma.uni(yi = .x$var.VR, sei = sqrt(1 / 2*(.x$N.VR - 1)),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 10000, stepadj=0.5), verbose=F)),
       model_heteroRR = map(data, ~ metafor::rma.uni(yi = .x$var.RR, sei = sqrt(1 / 2*(.x$N.RR - 1)),  
                control=list(optimizer="optim", optmethod="Nelder-Mead", maxit= 10000, stepadj=0.5), verbose=F)))   

heterog1
## # A tibble: 9 x 5
##   GroupingTerm data           model_heteroCVR model_heteroVR model_heteroRR
##   <fct>        <list>         <list>          <list>         <list>        
## 1 Behaviour    <tibble [18 ×… <rma.uni>       <rma.uni>      <rma.uni>     
## 2 Immunology   <tibble [19 ×… <rma.uni>       <rma.uni>      <rma.uni>     
## 3 Hematology   <tibble [17 ×… <rma.uni>       <rma.uni>      <rma.uni>     
## 4 Hearing      <tibble [6 × … <rma.uni>       <rma.uni>      <rma.uni>     
## 5 Physiology   <tibble [26 ×… <rma.uni>       <rma.uni>      <rma.uni>     
## 6 Metabolism   <tibble [9 × … <rma.uni>       <rma.uni>      <rma.uni>     
## 7 Morphology   <tibble [16 ×… <rma.uni>       <rma.uni>      <rma.uni>     
## 8 Heart        <tibble [29 ×… <rma.uni>       <rma.uni>      <rma.uni>     
## 9 Eye          <tibble [12 ×… <rma.uni>       <rma.uni>      <rma.uni>
# **Re-structure data for each grouping term; extract heterogenenity/variance terms; delete un-used variables

Behaviour. <- heterog1 %>% filter(., GroupingTerm == "Behaviour")  %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Immunology. <- heterog1 %>% filter(., GroupingTerm == "Immunology") %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)


Hematology. <- heterog1 %>% filter(., GroupingTerm == "Hematology") %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)


Hearing. <- heterog1 %>% filter(., GroupingTerm == "Hearing")  %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Physiology. <- heterog1 %>% filter(., GroupingTerm == "Physiology")  %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Metabolism. <- heterog1 %>% filter(., GroupingTerm == "Metabolism")  %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Morphology. <- heterog1 %>% filter(., GroupingTerm == "Morphology") %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Heart. <- heterog1 %>% filter(., GroupingTerm == "Heart")  %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

Eye. <- heterog1 %>% filter(., GroupingTerm == "Eye")  %>% select(., -data)  %>%  mutate(heteroCVR=.[[2]][[1]]$b, heteroCVR_lower=.[[2]][[1]]$ci.lb, heteroCVR_upper=.[[2]][[1]]$ci.ub, heteroCVR_se=.[[2]][[1]]$se,
                  heteroVR=.[[3]][[1]]$b, heteroVR_lower=.[[3]][[1]]$ci.lb, heteroVR_upper=.[[3]][[1]]$ci.ub, heteroVR_se=.[[3]][[1]]$se,
                heteroRR=.[[4]][[1]]$b, heteroRR_lower=.[[4]][[1]]$ci.lb, heteroRR_upper=.[[4]][[1]]$ci.ub, heteroRR_se=.[[4]][[1]]$se) %>%
              select(., GroupingTerm, heteroCVR:heteroRR_se)

heterog2 <- bind_rows(Behaviour., Morphology., Metabolism., Physiology., Immunology., Hematology., Heart., Hearing., Eye.)
#str(heterog2)

Heterogeneity PLOTS

Restructure data for plotting

heterog3 <- gather(heterog2, parameter, value, c(heteroCVR, heteroVR, heteroRR), factor_key= TRUE)

heteroCVR.ci <- heterog3 %>% filter(parameter == "heteroCVR") %>% mutate(ci.low = heteroCVR_lower, ci.high = heteroCVR_upper)
heteroVR.ci <- heterog3 %>% filter(parameter == "heteroVR") %>% mutate(ci.low = heteroVR_lower, ci.high = heteroVR_upper)
heteroRR.ci <- heterog3 %>% filter(parameter == "heteroRR") %>% mutate(ci.low = heteroRR_lower, ci.high = heteroRR_upper)                   

heterog4 <- bind_rows(heteroCVR.ci, heteroVR.ci, heteroRR.ci) %>% select(GroupingTerm, parameter, value, ci.low, ci.high)

# **Re-order grouping terms 

heterog4$GroupingTerm <- factor(heterog4$GroupingTerm, levels =c("Behaviour","Morphology","Metabolism","Physiology","Immunology","Hematology","Heart","Hearing","Eye") )
heterog4$GroupingTerm <- factor(heterog4$GroupingTerm, rev(levels(heterog4$GroupingTerm)))
heterog4$label <- "All traits"
#write.csv(heterog4, "heterog4.csv")

Plot FIGURE 4 (5 in ms) (Second-order meta analysis on heterogeneity)

Plot Fig4 all traits

Metameta_Fig4_alltraits <- heterog4 %>%

  ggplot(aes(y= GroupingTerm, x= value)) +
  geom_errorbarh(aes(xmin = ci.low, 
                     xmax = ci.high), 
               height = 0.1, show.legend = FALSE) +
  geom_point(aes(shape = parameter,
             fill = parameter, color = parameter), size = 2.2, 
             show.legend = FALSE) +
  scale_x_continuous(limits=c(-7.0, 1), 
                     #breaks = c(-2.0, -1.5, -1.0, -0.5, 0, 0.5, 1.0, 1.5, 2.0), 
                     name='Effect size') +
  facet_grid(cols = vars(parameter), rows = vars(label),
             labeller = label_wrap_gen(width = 23),
             scales= 'free', 
             space='free')+
  theme_bw()+
  theme(strip.text.y = element_text(angle = 270, size = 10, margin = margin(t=15, r=15, b=15, l=15)), 
      strip.text.x = element_text(size = 12),
        strip.background = element_rect(colour = NULL, linetype = "blank", fill = "gray90"),
        text = element_text(size = 14),
        panel.spacing = unit(0.5, "lines"),
        panel.border= element_blank(),
        axis.line=element_line(), 
        panel.grid.major.x = element_line(linetype = "solid", colour = "gray95"),
        panel.grid.major.y = element_line(linetype = "solid", color = "gray95"),
        panel.grid.minor.y = element_blank(),
        panel.grid.minor.x = element_blank(), 
        legend.title = element_blank(),
        axis.title.x = element_blank(),
      axis.title.y = element_blank())

Metameta_Fig4_alltraits 

#ggsave("Fig4.pdf", plot = Metameta_Fig4_alltraits, width = 7, height = 6)